亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? svm.m

?? LibSVM工具箱
?? M
字號:
function net = svm(nin, kernel, kernelpar, C, use2norm, qpsolver, qpsize)% SVM - Create a Support Vector Machine classifier% %   NET = SVM(NIN, KERNEL, KERNELPAR, C, USE2NORM, QPSOLVER, QPSIZE)%   (All parameters from KERNELPAR on are optional).%   Initialise a structure NET containing the basic settings for a Support%   Vector Machine (SVM) classifier. The SVM is assumed to have input of%   dimension NIN, it works with kernel function KERNEL. If the kernel%   function needs extra parameters, these must be given in the array%   KERNELPAR. See function SVMKERNEL for a list of valid kernel%   functions.%%   The structure NET has the following fields:%   Basic SVM parameters:%     'type' = 'svm'%     'nin' = NIN   number of input dimensions%     'nout' = 1   number of output dimensions%     'kernel' = KERNEL   kernel function%     'kernelpar' = KERNELPAR   parameters for the kernel function%     'c' = C  Upper bound for the coefficients NET.alpha during%       training. Depending on the size of NET.c, the value is%       interpreted as follows:%       LENGTH(NET.c)==1: Upper bound for all coefficients.%       LENGTH(NET.c)==2: Different upper bounds for positive (+1) and%       negative (-1) examples. NET.c(1) is the bound for the positive,%       NET.c(2) is the bound for the negative examples.%       LENGTH(NET.c)==N, where N is the number of examples that are%       passed to SVMTRAIN: NET.c(i) is the upper bound for the%       coefficient NET.alpha(i) associated with example i.%       Default value: 1%     'use2norm' = USE2NORM: If non-zero, the training procedure will use%       an objective function that involves the 2norm of the errors on%       the training points, otherwise the 1norm is used (standard%       SVM). Default value: 0.%%   Fields that will be set during training with SVMTRAIN:%     'nbexamples' = Number of training examples%     'alpha' = After training, this field contains a column vector with%       coefficients (weights) for each training example. NET.alpha is%       not used in any subsequent SVM routines, it can be removed after%       training.%     'svind' = After training, this field contains the indices of those%       training examples that are Support Vectors (those with a large%       enough value of alpha)%     'sv' = Contains all the training examples that are Support Vectors.%     'svcoeff' = After training, this field is the product of NET.alpha%       times the label of the corresponding training example, for all%       examples that are Support Vectors. It is given in the same order%       as the examples are given in NET.sv.%     'bias' = The linear term of the SVM decision function.%     'normalw' = Normal vector of the hyperplane that separates the%       examples. This is only computed if a linear kernel%       NET.kernel='linear' is used.%%   Parameters specifically for SVMTRAIN (rarely need to be changed):%     'qpsolver' = QPSOLVER. QPSOLVER must be one of 'quadprog', 'loqo',%       'qp' or empty for auto-detect. Name of the function that solves%       the quadratic programming problems in SVMTRAIN.%       Default value: empty (auto-detect).%     'qpsize' =  QPSIZE. The maximum number of points given to the QP%       solver. Default value: 50.%     'alphatol' = Tolerance for all comparisons that involve the%       coefficients NET.alpha. Default value: 1E-2.%     'kkttol' = Tolerance for checking the KKT conditions (termination%       criterion) Default value: 5E-2. Lower this when high precision is%       required.%%   See also:%   SVMKERNEL, SVMTRAIN, SVMFWD%% % Copyright (c) Anton Schwaighofer (2001)% $Revision: 1.6 $ $Date: 2002/01/07 19:51:49 $% mailto:anton.schwaighofer@gmx.net% % This program is released unter the GNU General Public License.% if nargin < 7,  qpsize = 50;endif nargin < 6,  qpsolver = '';endif nargin < 5,  use2norm = 0;endif nargin < 4,  C = 1;endif nargin < 3,  kernelpar = [];endnet.type = 'svm';net.nin = nin;net.nout = 1;net.kernel = kernel;net.kernelpar = kernelpar;net.c = C;net.use2norm = use2norm;net.nbexamples = 0;net.alpha = [];net.svcoeff = [];net.sv = [];net.svind = [];net.bias = [];net.normalw = [];net.qpsolver = qpsolver;net.qpsize = qpsize;net.alphatol = 1e-2;net.kkttol = 5e-2;net.chunksize = 500;%     'chunksize' = Large matrix operations (for example when evaluating%       the kernel functions) are split up into submatrices with maximum%       size [NET.chunksize, NET.chunksize]. Default value: 500net.recompute = Inf;%     'recompute' = During training, the SVM outputs are updated%       iteratively. After NET.recompute iterations the SVM outputs are%       built again from scratch. Lower this when high precision is required.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
另类小说一区二区三区| 美女精品自拍一二三四| 欧美乱熟臀69xxxxxx| 黄色成人免费在线| 亚洲精品乱码久久久久久 | 久久久久久久综合日本| 91亚洲精品久久久蜜桃网站 | 日本精品一区二区三区四区的功能| 国产女主播视频一区二区| 欧美性受xxxx黑人xyx| 国产精品中文欧美| 全部av―极品视觉盛宴亚洲| 国产精品国产三级国产| xfplay精品久久| 7777女厕盗摄久久久| 欧洲视频一区二区| 99久久精品免费看国产免费软件| 一区二区三区中文字幕| 久久久午夜精品理论片中文字幕| 不卡一区二区三区四区| 亚洲精品中文字幕乱码三区| 久久久精品中文字幕麻豆发布| 成人性生交大片免费看中文网站| 亚洲精品免费一二三区| 国产欧美一区二区精品忘忧草| 成人毛片老司机大片| 激情文学综合插| 日本亚洲免费观看| 亚洲成人动漫在线观看| 亚洲精品乱码久久久久久久久| 日韩色视频在线观看| 欧美精品1区2区| 在线免费视频一区二区| 免费观看在线色综合| 日韩成人精品在线观看| 亚洲v日本v欧美v久久精品| 久久久国产精品午夜一区ai换脸| 91久久奴性调教| 99re热视频精品| 成人黄色综合网站| 99re这里只有精品6| 99国产精品久久久久久久久久| 蜜桃视频在线观看一区二区| 婷婷久久综合九色综合伊人色| 久久久91精品国产一区二区精品| 欧美三级蜜桃2在线观看| 国产成人自拍网| 亚洲成人av一区| 成人丝袜18视频在线观看| 国产乱子轮精品视频| 亚洲综合区在线| 亚洲一区二区在线播放相泽| 国产农村妇女毛片精品久久麻豆| 在线不卡免费欧美| 欧美一级精品在线| 精品国产免费久久| 欧美国产禁国产网站cc| 91.com视频| 日韩欧美一区二区久久婷婷| 久久精品无码一区二区三区| 国产女人水真多18毛片18精品视频| 91精品国产91久久久久久一区二区| av电影一区二区| 91蜜桃传媒精品久久久一区二区| 国产在线视频一区二区三区| 午夜久久久久久久久| 日本不卡不码高清免费观看| 精品一区二区三区视频| 日韩高清欧美激情| 一区二区三区中文字幕电影| 国产精品久久久久久久久果冻传媒| 精品国产一区二区精华| 欧美国产禁国产网站cc| 亚洲一区二区三区国产| 久久99精品网久久| 成人免费看的视频| 欧美日韩国产精选| 精品无人区卡一卡二卡三乱码免费卡| 欧美国产国产综合| 一个色妞综合视频在线观看| 青椒成人免费视频| 国产成人高清视频| 欧美精品一级二级| 国产日产亚洲精品系列| 国产婷婷色一区二区三区| 亚洲黄色小视频| 久久国产精品色婷婷| 91在线视频播放地址| 777奇米成人网| 中文字幕一区在线观看| 日日夜夜精品视频免费| 成人免费黄色大片| 欧美电影影音先锋| 成人免费在线播放视频| 久久精品国产亚洲一区二区三区| 日韩精品高清不卡| 成人一区二区三区在线观看| 欧美情侣在线播放| 国产精品嫩草影院av蜜臀| 亚洲欧洲av一区二区三区久久| 亚洲天堂网中文字| 久久99精品国产麻豆不卡| 九色综合狠狠综合久久| 国产乱码精品一区二区三| 欧美日韩国产大片| 日韩手机在线导航| 一区二区三区不卡视频在线观看| 亚洲精品日韩一| 亚洲国产日韩在线一区模特| 亚洲福利一二三区| 粉嫩绯色av一区二区在线观看 | 国模冰冰炮一区二区| 91久久精品网| 国产精品视频在线看| 国产一区二区电影| 日韩美女主播在线视频一区二区三区| 欧美精品一区二区久久婷婷| 性久久久久久久久| 色婷婷狠狠综合| 国产精品久久久久久久岛一牛影视| 亚洲人快播电影网| 成人自拍视频在线| 久久你懂得1024| 亚洲品质自拍视频| 成人美女视频在线观看| 国产日韩欧美一区二区三区乱码 | 日韩精品欧美成人高清一区二区| 韩国中文字幕2020精品| 91麻豆精品国产91| 婷婷综合另类小说色区| 欧美在线一区二区三区| 精品福利一二区| 日本女人一区二区三区| 不卡影院免费观看| 国产精品麻豆久久久| 国产成都精品91一区二区三| 国产亚洲婷婷免费| 国产成人综合亚洲网站| 中文字幕+乱码+中文字幕一区| 亚洲国产色一区| 欧美三级一区二区| 日韩福利电影在线观看| 制服.丝袜.亚洲.另类.中文| 午夜一区二区三区在线观看| 91.xcao| 人人超碰91尤物精品国产| 日韩美一区二区三区| 一区二区高清在线| 国产成人av一区二区三区在线| 欧美日韩国产精品自在自线| 国产精品精品国产色婷婷| 97se狠狠狠综合亚洲狠狠| 久久亚洲欧美国产精品乐播| 国产精品18久久久久| 6080日韩午夜伦伦午夜伦| 日韩在线一区二区| 日韩精品一区二区三区swag | 国产精品123区| 中文字幕一区二区三区在线观看| 国产一区二区三区电影在线观看 | 97se亚洲国产综合自在线观| 18涩涩午夜精品.www| 色94色欧美sute亚洲线路二| 亚洲成人av在线电影| 欧美成人伊人久久综合网| 国产成人av电影在线| 亚洲欧美日韩国产综合在线| 欧美色中文字幕| 久久精品国产999大香线蕉| 国产欧美一区二区三区网站| 91黄色在线观看| 免费不卡在线视频| 欧美激情艳妇裸体舞| 色偷偷88欧美精品久久久| av在线一区二区| 视频一区中文字幕国产| 久久久久久一二三区| 精品在线免费视频| 日韩理论电影院| 日韩精品一区二区三区视频在线观看| 日韩二区三区四区| 国产精品视频在线看| 欧美丰满少妇xxxbbb| 成人av免费网站| 日韩高清不卡一区二区三区| 678五月天丁香亚洲综合网| 国产91在线看| 天涯成人国产亚洲精品一区av| 91久久精品午夜一区二区| 麻豆精品一区二区av白丝在线| 这里只有精品电影| 菠萝蜜视频在线观看一区| 日韩国产高清影视| 亚洲欧洲www| 久久久亚洲高清| 777精品伊人久久久久大香线蕉| 美女性感视频久久| 亚洲精品视频在线看| 久久综合九色综合97婷婷女人| 国产成人午夜99999|