?? aticlock.c
字號:
} /* Adjust divided clocks */ for (ClockIndex = NumberOfUndividedClocks; ClockIndex < NumberOfClocks; ClockIndex++) pScreenInfo->clock[ClockIndex] = ATIDivide( pScreenInfo->clock[ClockIndex % NumberOfUndividedClocks], (ClockIndex / NumberOfUndividedClocks) + 1, 0, 0); } /* Tell user about fixed clocks */ xf86ShowClocks(pScreenInfo, pATI->OptionProbeClocks ? X_PROBED : X_CONFIG); /* Prevent selection of high clocks, even by V_CLKDIV2 modes */ for (ClockIndex = 0; ClockIndex < NumberOfClocks; ClockIndex++) if (pScreenInfo->clock[ClockIndex] > pRange->maxClock) pScreenInfo->clock[ClockIndex] = 0;}/* * ATIClockSave -- * * This function saves that part of an ATIHWRec that relates to clocks. */voidATIClockSave( ScrnInfoPtr pScreenInfo, ATIPtr pATI, ATIHWPtr pATIHW){ if (pScreenInfo->vtSema && (pATI->ProgrammableClock > ATI_CLOCK_FIXED)) {#ifndef AVOID_CPIO if (pATIHW->crtc == ATI_CRTC_VGA) { pATIHW->ClockMap = ATIVGAProgrammableClockMap; pATIHW->ClockUnmap = ATIVGAProgrammableClockUnmap; } else#endif /* AVOID_CPIO */ { pATIHW->ClockMap = ATIProgrammableClockMap; pATIHW->ClockUnmap = ATIProgrammableClockUnmap; } } else {#ifndef AVOID_CPIO if (pATIHW->crtc != ATI_CRTC_VGA)#endif /* AVOID_CPIO */ { pATIHW->ClockMap = ATIAcceleratorClockMap; pATIHW->ClockUnmap = ATIAcceleratorClockUnmap; }#ifndef AVOID_CPIO else if (pATI->Chip < ATI_CHIP_68800) { pATIHW->ClockMap = ATIVGAWonderClockMap; pATIHW->ClockUnmap = ATIVGAWonderClockUnmap; } else { pATIHW->ClockMap = ATIMachVGAClockMap; pATIHW->ClockUnmap = ATIMachVGAClockUnmap; }#endif /* AVOID_CPIO */ }}/* * ATIClockCalculate -- * * This function is called to generate, if necessary, the data needed for clock * programming, and set clock select bits in various register values. */BoolATIClockCalculate( int iScreen, ATIPtr pATI, ATIHWPtr pATIHW, DisplayModePtr pMode){ int N, M, D; int ClockSelect, N1, MinimumGap; int Frequency, Multiple; /* Used as temporaries */ /* Set default values */ pATIHW->FeedbackDivider = pATIHW->ReferenceDivider = pATIHW->PostDivider = 0; if ((pATI->ProgrammableClock <= ATI_CLOCK_FIXED) || ((pATI->ProgrammableClock == ATI_CLOCK_CH8398) && (pMode->ClockIndex < 2))) { /* Use a fixed clock */ ClockSelect = pMode->ClockIndex; } else { /* Generate clock programme word, using units of kHz */ MinimumGap = ((unsigned int)(-1)) >> 1; /* Loop through reference dividers */ for (M = pATI->ClockDescriptor.MinM; M <= pATI->ClockDescriptor.MaxM; M++) { /* Loop through post-dividers */ for (D = 0; D < pATI->ClockDescriptor.NumD; D++) { if (!pATI->ClockDescriptor.PostDividers[D]) continue; /* Limit undivided VCO to maxClock */ if (pATI->maxClock && ((pATI->maxClock / pATI->ClockDescriptor.PostDividers[D]) < pMode->Clock)) continue; /* * Calculate closest feedback divider and apply its * restrictions. */ Multiple = M * pATI->ReferenceDenominator * pATI->ClockDescriptor.PostDividers[D]; N = ATIDivide(pMode->Clock * Multiple, pATI->ReferenceNumerator, 0, 0); if (N < pATI->ClockDescriptor.MinN) N = pATI->ClockDescriptor.MinN; else if (N > pATI->ClockDescriptor.MaxN) N = pATI->ClockDescriptor.MaxN; N -= pATI->ClockDescriptor.NAdjust; N1 = (N / pATI->ClockDescriptor.N1) * pATI->ClockDescriptor.N2; if (N > N1) N = ATIDivide(N1 + 1, pATI->ClockDescriptor.N1, 0, 1); N += pATI->ClockDescriptor.NAdjust; N1 += pATI->ClockDescriptor.NAdjust; for (; ; N = N1) { /* Pick the closest setting */ Frequency = abs(ATIDivide(N * pATI->ReferenceNumerator, Multiple, 0, 0) - pMode->Clock); if ((Frequency < MinimumGap) || ((Frequency == MinimumGap) && (pATIHW->FeedbackDivider < N))) { /* Save settings */ pATIHW->FeedbackDivider = N; pATIHW->ReferenceDivider = M; pATIHW->PostDivider = D; MinimumGap = Frequency; } if (N <= N1) break; } } } Multiple = pATIHW->ReferenceDivider * pATI->ReferenceDenominator * pATI->ClockDescriptor.PostDividers[pATIHW->PostDivider]; Frequency = pATIHW->FeedbackDivider * pATI->ReferenceNumerator; Frequency = ATIDivide(Frequency, Multiple, 0, 0); if (abs(Frequency - pMode->Clock) > CLOCK_TOLERANCE) { xf86DrvMsg(iScreen, X_ERROR, "Unable to programme clock %.3fMHz for mode %s.\n", (double)(pMode->Clock) / 1000.0, pMode->name); return FALSE; } pMode->SynthClock = Frequency; ClockSelect = pATI->ClockNumberToProgramme; xf86ErrorFVerb(4, "\n Programming clock %d to %.3fMHz for mode %s." " N=%d, M=%d, D=%d.\n", ClockSelect, (double)Frequency / 1000.0, pMode->name, pATIHW->FeedbackDivider, pATIHW->ReferenceDivider, pATIHW->PostDivider); if (pATI->Chip >= ATI_CHIP_264VTB) ATIDSPCalculate(pATI, pATIHW, pMode); } /* Set clock select bits, after remapping them */ pATIHW->clock = ClockSelect; /* Save pre-map clock number */ ClockSelect = MapClockIndex(pATIHW->ClockMap, ClockSelect); switch (pATIHW->crtc) {#ifndef AVOID_CPIO case ATI_CRTC_VGA: pATIHW->genmo = (pATIHW->genmo & 0xF3U) | ((ClockSelect << 2) & 0x0CU); if (pATI->CPIO_VGAWonder) { /* Set ATI clock select bits */ if (pATI->Chip <= ATI_CHIP_18800) { pATIHW->b2 = (pATIHW->b2 & 0xBFU) | ((ClockSelect << 4) & 0x40U); } else { pATIHW->be = (pATIHW->be & 0xEFU) | ((ClockSelect << 2) & 0x10U); if (pATI->Adapter != ATI_ADAPTER_V4) { ClockSelect >>= 1; pATIHW->b9 = (pATIHW->b9 & 0xFDU) | ((ClockSelect >> 1) & 0x02U); } } /* Set clock divider bits */ pATIHW->b8 = (pATIHW->b8 & 0x3FU) | ((ClockSelect << 3) & 0xC0U); } break;#endif /* AVOID_CPIO */ case ATI_CRTC_MACH64: pATIHW->clock_cntl = CLOCK_STROBE | SetBits(ClockSelect, CLOCK_SELECT | CLOCK_DIVIDER); break; default: break; } return TRUE;}/* * ATIClockSet -- * * This function is called to programme a clock for the mode being set. */voidATIClockSet( ATIPtr pATI, ATIHWPtr pATIHW){ CARD32 crtc_gen_cntl, tmp; CARD8 clock_cntl0; CARD8 tmp2; unsigned int Programme; int N = pATIHW->FeedbackDivider - pATI->ClockDescriptor.NAdjust; int M = pATIHW->ReferenceDivider - pATI->ClockDescriptor.MAdjust; int D = pATIHW->PostDivider; /* Temporarily switch to accelerator mode */ crtc_gen_cntl = inr(CRTC_GEN_CNTL); if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN)) outr(CRTC_GEN_CNTL, crtc_gen_cntl | CRTC_EXT_DISP_EN); switch (pATI->ProgrammableClock) { case ATI_CLOCK_ICS2595: clock_cntl0 = in8(CLOCK_CNTL); Programme = (SetBits(pATIHW->clock, ICS2595_CLOCK) | SetBits(N, ICS2595_FB_DIV) | SetBits(D, ICS2595_POST_DIV)) ^ ICS2595_TOGGLE; ATIDelay(50000); /* 50 milliseconds */ (void)xf86DisableInterrupts(); /* Send all 20 bits of programme word */ while (Programme >= CLOCK_BIT) { tmp = (Programme & CLOCK_BIT) | CLOCK_STROBE; out8(CLOCK_CNTL, tmp); ATIDelay(26); /* 26 microseconds */ out8(CLOCK_CNTL, tmp | CLOCK_PULSE); ATIDelay(26); /* 26 microseconds */ Programme >>= 1; } xf86EnableInterrupts(); /* Restore register */ out8(CLOCK_CNTL, clock_cntl0 | CLOCK_STROBE); break; case ATI_CLOCK_STG1703: (void)ATIGetDACCmdReg(pATI); (void)in8(M64_DAC_MASK); out8(M64_DAC_MASK, (pATIHW->clock << 1) + 0x20U); out8(M64_DAC_MASK, 0); out8(M64_DAC_MASK, SetBits(N, 0xFFU)); out8(M64_DAC_MASK, SetBits(M, 0x1FU) | SetBits(D, 0xE0U)); break; case ATI_CLOCK_CH8398: tmp = inr(DAC_CNTL) | (DAC_EXT_SEL_RS2 | DAC_EXT_SEL_RS3); outr(DAC_CNTL, tmp); out8(M64_DAC_WRITE, pATIHW->clock); out8(M64_DAC_DATA, SetBits(N, 0xFFU)); out8(M64_DAC_DATA, SetBits(M, 0x3FU) | SetBits(D, 0xC0U)); out8(M64_DAC_MASK, 0x04U); outr(DAC_CNTL, tmp & ~(DAC_EXT_SEL_RS2 | DAC_EXT_SEL_RS3)); tmp2 = in8(M64_DAC_WRITE); out8(M64_DAC_WRITE, (tmp2 & 0x70U) | 0x80U); outr(DAC_CNTL, tmp & ~DAC_EXT_SEL_RS2); break; case ATI_CLOCK_INTERNAL: /* Reset VCLK generator */ ATIMach64PutPLLReg(PLL_VCLK_CNTL, pATIHW->pll_vclk_cntl); /* Set post-divider */ tmp2 = pATIHW->clock << 1; tmp = ATIMach64GetPLLReg(PLL_VCLK_POST_DIV); tmp &= ~(0x03U << tmp2); tmp |= SetBits(D, 0x03U) << tmp2; ATIMach64PutPLLReg(PLL_VCLK_POST_DIV, tmp); /* Set extended post-divider */ tmp = ATIMach64GetPLLReg(PLL_XCLK_CNTL); tmp &= ~(SetBits(1, PLL_VCLK0_XDIV) << pATIHW->clock); tmp |= SetBits(D >> 2, PLL_VCLK0_XDIV) << pATIHW->clock; ATIMach64PutPLLReg(PLL_XCLK_CNTL, tmp); /* Set feedback divider */ tmp = PLL_VCLK0_FB_DIV + pATIHW->clock; ATIMach64PutPLLReg(tmp, SetBits(N, 0xFFU)); /* End VCLK generator reset */ ATIMach64PutPLLReg(PLL_VCLK_CNTL, pATIHW->pll_vclk_cntl & ~PLL_VCLK_RESET); /* Reset write bit */ ATIMach64AccessPLLReg(pATI, 0, FALSE); break; case ATI_CLOCK_ATT20C408: (void)ATIGetDACCmdReg(pATI); tmp = in8(M64_DAC_MASK); (void)ATIGetDACCmdReg(pATI); out8(M64_DAC_MASK, tmp | 1); out8(M64_DAC_WRITE, 1); out8(M64_DAC_MASK, tmp | 9); ATIDelay(400); /* 400 microseconds */ tmp2 = (pATIHW->clock << 2) + 0x40U; out8(M64_DAC_WRITE, tmp2); out8(M64_DAC_MASK, SetBits(N, 0xFFU)); out8(M64_DAC_WRITE, ++tmp2); out8(M64_DAC_MASK, SetBits(M, 0x3FU) | SetBits(D, 0xC0U)); out8(M64_DAC_WRITE, ++tmp2); out8(M64_DAC_MASK, 0x77U); ATIDelay(400); /* 400 microseconds */ out8(M64_DAC_WRITE, 1); out8(M64_DAC_MASK, tmp); break; case ATI_CLOCK_IBMRGB514: /* * Here, only update in-core data. It will be written out later by * ATIRGB514Set(). */ tmp = (pATIHW->clock << 1) + 0x20U; pATIHW->ibmrgb514[tmp] = (SetBits(N, 0x3FU) | SetBits(D, 0xC0U)) ^ 0xC0U; pATIHW->ibmrgb514[tmp + 1] = SetBits(M, 0x3FU); break; default: break; } (void)in8(M64_DAC_WRITE); /* Clear DAC counter */ /* Restore register */ if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN)) outr(CRTC_GEN_CNTL, crtc_gen_cntl);}
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -