?? port.c
字號:
/*
FreeRTOS.org V4.2.1 - Copyright (C) 2003-2007 Richard Barry.
This file is part of the FreeRTOS.org distribution.
FreeRTOS.org is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FreeRTOS.org is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FreeRTOS.org; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
A special exception to the GPL can be applied should you wish to distribute
a combined work that includes FreeRTOS.org, without being obliged to provide
the source code for any proprietary components. See the licensing section
of http://www.FreeRTOS.org for full details of how and when the exception
can be applied.
***************************************************************************
See http://www.FreeRTOS.org for documentation, latest information, license
and contact details. Please ensure to read the configuration and relevant
port sections of the online documentation.
Also see http://www.SafeRTOS.com for an IEC 61508 compliant version along
with commercial development and support options.
***************************************************************************
*/
/*
Changes between V1.2.4 and V1.2.5
+ Introduced portGLOBAL_INTERRUPT_FLAG definition to test the global
interrupt flag setting. Using the two bits defined within
portINITAL_INTERRUPT_STATE was causing the w register to get clobbered
before the test was performed.
Changes from V1.2.5
+ Set the interrupt vector address to 0x08. Previously it was at the
incorrect address for compatibility mode of 0x18.
Changes from V2.1.1
+ PCLATU and PCLATH are now saved as part of the context. This allows
function pointers to be used within tasks. Thanks to Javier Espeche
for the enhancement.
Changes from V2.3.1
+ TABLAT is now saved as part of the task context.
Changes from V3.2.0
+ TBLPTRU is now initialised to zero as the MPLAB compiler expects this
value and does not write to the register.
*/
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
/* MPLAB library include file. */
#include "timers.h"
/*-----------------------------------------------------------
* Implementation of functions defined in portable.h for the PIC port.
*----------------------------------------------------------*/
/* Hardware setup for tick. */
#define portTIMER_FOSC_SCALE ( ( unsigned portLONG ) 4 )
/* Initial interrupt enable state for newly created tasks. This value is
copied into INTCON when a task switches in for the first time. */
#define portINITAL_INTERRUPT_STATE 0xc0
/* Just the bit within INTCON for the global interrupt flag. */
#define portGLOBAL_INTERRUPT_FLAG 0x80
/* Constant used for context switch macro when we require the interrupt
enable state to be unchanged when the interrupted task is switched back in. */
#define portINTERRUPTS_UNCHANGED 0x00
/* Some memory areas get saved as part of the task context. These memory
area's get used by the compiler for temporary storage, especially when
performing mathematical operations, or when using 32bit data types. This
constant defines the size of memory area which must be saved. */
#define portCOMPILER_MANAGED_MEMORY_SIZE ( ( unsigned portCHAR ) 0x13 )
/* We require the address of the pxCurrentTCB variable, but don't want to know
any details of its type. */
typedef void tskTCB;
extern volatile tskTCB * volatile pxCurrentTCB;
/* IO port constants. */
#define portBIT_SET ( ( unsigned portCHAR ) 1 )
#define portBIT_CLEAR ( ( unsigned portCHAR ) 0 )
/*
* The serial port ISR's are defined in serial.c, but are called from portable
* as they use the same vector as the tick ISR.
*/
void vSerialTxISR( void );
void vSerialRxISR( void );
/*
* Perform hardware setup to enable ticks.
*/
static void prvSetupTimerInterrupt( void );
/*
* ISR to maintain the tick, and perform tick context switches if the
* preemptive scheduler is being used.
*/
static void prvTickISR( void );
/*
* ISR placed on the low priority vector. This calls the appropriate ISR for
* the actual interrupt.
*/
static void prvLowInterrupt( void );
/*
* Macro that pushes all the registers that make up the context of a task onto
* the stack, then saves the new top of stack into the TCB.
*
* If this is called from an ISR then the interrupt enable bits must have been
* set for the ISR to ever get called. Therefore we want to save the INTCON
* register with the enable bits forced to be set - and ucForcedInterruptFlags
* must contain these bit settings. This means the interrupts will again be
* enabled when the interrupted task is switched back in.
*
* If this is called from a manual context switch (i.e. from a call to yield),
* then we want to save the INTCON so it is restored with its current state,
* and ucForcedInterruptFlags must be 0. This allows a yield from within
* a critical section.
*
* The compiler uses some locations at the bottom of the memory for temporary
* storage during math and other computations. This is especially true if
* 32bit data types are utilised (as they are by the scheduler). The .tmpdata
* and MATH_DATA sections have to be stored in there entirety as part of a task
* context. This macro stores from data address 0x00 to
* portCOMPILER_MANAGED_MEMORY_SIZE. This is sufficient for the demo
* applications but you should check the map file for your project to ensure
* this is sufficient for your needs. It is not clear whether this size is
* fixed for all compilations or has the potential to be program specific.
*/
#define portSAVE_CONTEXT( ucForcedInterruptFlags ) \
{ \
_asm \
/* Save the status and WREG registers first, as these will get modified \
by the operations below. */ \
MOVFF WREG, PREINC1 \
MOVFF STATUS, PREINC1 \
/* Save the INTCON register with the appropriate bits forced if \
necessary - as described above. */ \
MOVFF INTCON, WREG \
IORLW ucForcedInterruptFlags \
MOVFF WREG, PREINC1 \
_endasm \
\
portDISABLE_INTERRUPTS(); \
\
_asm \
/* Store the necessary registers to the stack. */ \
MOVFF BSR, PREINC1 \
MOVFF FSR2L, PREINC1 \
MOVFF FSR2H, PREINC1 \
MOVFF FSR0L, PREINC1 \
MOVFF FSR0H, PREINC1 \
MOVFF TABLAT, PREINC1 \
MOVFF TBLPTRU, PREINC1 \
MOVFF TBLPTRH, PREINC1 \
MOVFF TBLPTRL, PREINC1 \
MOVFF PRODH, PREINC1 \
MOVFF PRODL, PREINC1 \
MOVFF PCLATU, PREINC1 \
MOVFF PCLATH, PREINC1 \
/* Store the .tempdata and MATH_DATA areas as described above. */ \
CLRF FSR0L, 0 \
CLRF FSR0H, 0 \
MOVFF POSTINC0, PREINC1 \
MOVFF POSTINC0, PREINC1 \
MOVFF POSTINC0, PREINC1 \
MOVFF POSTINC0, PREINC1 \
MOVFF POSTINC0, PREINC1 \
MOVFF POSTINC0, PREINC1 \
MOVFF POSTINC0, PREINC1 \
MOVFF POSTINC0, PREINC1 \
MOVFF POSTINC0, PREINC1 \
MOVFF POSTINC0, PREINC1 \
MOVFF POSTINC0, PREINC1 \
MOVFF POSTINC0, PREINC1 \
MOVFF POSTINC0, PREINC1 \
MOVFF POSTINC0, PREINC1 \
MOVFF POSTINC0, PREINC1 \
MOVFF POSTINC0, PREINC1 \
MOVFF POSTINC0, PREINC1 \
MOVFF POSTINC0, PREINC1 \
MOVFF POSTINC0, PREINC1 \
MOVFF INDF0, PREINC1 \
MOVFF FSR0L, PREINC1 \
MOVFF FSR0H, PREINC1 \
/* Store the hardware stack pointer in a temp register before we \
modify it. */ \
MOVFF STKPTR, FSR0L \
_endasm \
\
/* Store each address from the hardware stack. */ \
while( STKPTR > ( unsigned portCHAR ) 0 ) \
{ \
_asm \
MOVFF TOSL, PREINC1 \
MOVFF TOSH, PREINC1 \
MOVFF TOSU, PREINC1 \
POP \
_endasm \
} \
\
_asm \
/* Store the number of addresses on the hardware stack (from the \
temporary register). */ \
MOVFF FSR0L, PREINC1 \
MOVF PREINC1, 1, 0 \
_endasm \
\
/* Save the new top of the software stack in the TCB. */ \
_asm \
MOVFF pxCurrentTCB, FSR0L \
MOVFF pxCurrentTCB + 1, FSR0H \
MOVFF FSR1L, POSTINC0 \
MOVFF FSR1H, POSTINC0 \
_endasm \
}
/*-----------------------------------------------------------*/
/*
* This is the reverse of portSAVE_CONTEXT. See portSAVE_CONTEXT for more
* details.
*/
#define portRESTORE_CONTEXT() \
{ \
_asm \
/* Set FSR0 to point to pxCurrentTCB->pxTopOfStack. */ \
MOVFF pxCurrentTCB, FSR0L \
MOVFF pxCurrentTCB + 1, FSR0H \
\
/* De-reference FSR0 to set the address it holds into FSR1. \
(i.e. *( pxCurrentTCB->pxTopOfStack ) ). */ \
MOVFF POSTINC0, FSR1L \
MOVFF POSTINC0, FSR1H \
\
/* How many return addresses are there on the hardware stack? Discard \
the first byte as we are pointing to the next free space. */ \
MOVFF POSTDEC1, FSR0L \
MOVFF POSTDEC1, FSR0L \
_endasm \
\
/* Fill the hardware stack from our software stack. */ \
STKPTR = 0; \
\
while( STKPTR < FSR0L ) \
{ \
_asm \
PUSH \
MOVF POSTDEC1, 0, 0 \
MOVWF TOSU, 0 \
MOVF POSTDEC1, 0, 0 \
MOVWF TOSH, 0 \
MOVF POSTDEC1, 0, 0 \
MOVWF TOSL, 0 \
_endasm \
} \
\
_asm \
/* Restore the .tmpdata and MATH_DATA memory. */ \
MOVFF POSTDEC1, FSR0H \
MOVFF POSTDEC1, FSR0L \
MOVFF POSTDEC1, POSTDEC0 \
MOVFF POSTDEC1, POSTDEC0 \
MOVFF POSTDEC1, POSTDEC0 \
MOVFF POSTDEC1, POSTDEC0 \
MOVFF POSTDEC1, POSTDEC0 \
MOVFF POSTDEC1, POSTDEC0 \
MOVFF POSTDEC1, POSTDEC0 \
MOVFF POSTDEC1, POSTDEC0 \
MOVFF POSTDEC1, POSTDEC0 \
MOVFF POSTDEC1, POSTDEC0 \
MOVFF POSTDEC1, POSTDEC0 \
MOVFF POSTDEC1, POSTDEC0 \
MOVFF POSTDEC1, POSTDEC0 \
MOVFF POSTDEC1, POSTDEC0 \
MOVFF POSTDEC1, POSTDEC0 \
MOVFF POSTDEC1, POSTDEC0 \
MOVFF POSTDEC1, POSTDEC0 \
MOVFF POSTDEC1, POSTDEC0 \
MOVFF POSTDEC1, POSTDEC0 \
MOVFF POSTDEC1, INDF0 \
/* Restore the other registers forming the tasks context. */ \
MOVFF POSTDEC1, PCLATH \
MOVFF POSTDEC1, PCLATU \
MOVFF POSTDEC1, PRODL \
MOVFF POSTDEC1, PRODH \
MOVFF POSTDEC1, TBLPTRL \
MOVFF POSTDEC1, TBLPTRH \
MOVFF POSTDEC1, TBLPTRU \
MOVFF POSTDEC1, TABLAT \
MOVFF POSTDEC1, FSR0H \
MOVFF POSTDEC1, FSR0L \
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -