亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? prog.txt

?? 這是一個非常簡單的遺傳算法源代碼
?? TXT
字號:
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 

/* Change any of these parameters to match your needs */ 

#define POPSIZE 50 /* population size */ 
#define MAXGENS 1000 /* max. number of generations */ 
#define NVARS 3 /* no. of problem variables */ 
#define PXOVER 0.8 /* probability of crossover */ 
#define PMUTATION 0.15 /* probability of mutation */ 
#define TRUE 1 
#define FALSE 0 

int generation; /* current generation no. */ 
int cur_best; /* best individual */ 
FILE *galog; /* an output file */ 

struct genotype /* genotype (GT), a member of the population */ 
{ 
double gene[NVARS]; /* a string of variables */ 
double fitness; /* GT's fitness */ 
double upper[NVARS]; /* GT's variables upper bound */ 
double lower[NVARS]; /* GT's variables lower bound */ 
double rfitness; /* relative fitness */ 
double cfitness; /* cumulative fitness */ 
}; 

struct genotype population[POPSIZE+1]; /* population */ 
struct genotype newpopulation[POPSIZE+1]; /* new population; */ 
/* replaces the */ 
/* old generation */ 

/* Declaration of procedures used by this genetic algorithm */ 

void initialize(void); 
double randval(double, double); 
void evaluate(void); 
void keep_the_best(void); 
void elitist(void); 
void select(void); 
void crossover(void); 
void Xover(int,int); 
void swap(double *, double *); 
void mutate(void); 
void report(void); 

/***************************************************************/ 
/* Initialization function: Initializes the values of genes */ 
/* within the variables bounds. It also initializes (to zero) */ 
/* all fitness values for each member of the population. It */ 
/* reads upper and lower bounds of each variable from the */ 
/* input file `gadata.txt'. It randomly generates values */ 
/* between these bounds for each gene of each genotype in the */ 
/* population. The format of the input file `gadata.txt' is */ 
/* var1_lower_bound var1_upper bound */ 
/* var2_lower_bound var2_upper bound ... */ 
/***************************************************************/ 

void initialize(void) 
{ 
FILE *infile; 
int i, j; 
double lbound, ubound; 

if ((infile = fopen("gadata.txt","r"))==NULL) 
{ 
fprintf(galog,"\nCannot open input file!\n"); 
exit(1); 
} 

/* initialize variables within the bounds */ 

for (i = 0; i < NVARS; i++) 
{ 
fscanf(infile, "%lf",&lbound); 
fscanf(infile, "%lf",&ubound); 

for (j = 0; j < POPSIZE; j++) 
{ 
population[j].fitness = 0; 
population[j].rfitness = 0; 
population[j].cfitness = 0; 
population[j].lower[i] = lbound; 
population[j].upper[i]= ubound; 
population[j].gene[i] = randval(population[j].lower[i], 
population[j].upper[i]); 
} 
} 

fclose(infile); 
} 

/***********************************************************/ 
/* Random value generator: Generates a value within bounds */ 
/***********************************************************/ 

double randval(double low, double high) 
{ 
double val; 
val = ((double)(rand()%1000)/1000.0)*(high - low) + low; 
return(val); 
} 

/*************************************************************/ 
/* Evaluation function: This takes a user defined function. */ 
/* Each time this is changed, the code has to be recompiled. */ 
/* The current function is: x[1]^2-x[1]*x[2]+x[3] */ 
/*************************************************************/ 

void evaluate(void) 
{ 
int mem; 
int i; 
double x[NVARS+1]; 

for (mem = 0; mem < POPSIZE; mem++) 
{ 
for (i = 0; i < NVARS; i++) 
x[i+1] = population[mem].gene[i]; 

population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3]; 
} 
} 

/***************************************************************/ 
/* Keep_the_best function: This function keeps track of the */ 
/* best member of the population. Note that the last entry in */ 
/* the array Population holds a copy of the best individual */ 
/***************************************************************/ 

void keep_the_best() 
{ 
int mem; 
int i; 
cur_best = 0; /* stores the index of the best individual */ 

for (mem = 0; mem < POPSIZE; mem++) 
{ 
if (population[mem].fitness > population[POPSIZE].fitness) 
{ 
cur_best = mem; 
population[POPSIZE].fitness = population[mem].fitness; 
} 
} 
/* once the best member in the population is found, copy the genes */ 
for (i = 0; i < NVARS; i++) 
population[POPSIZE].gene[i] = population[cur_best].gene[i]; 
} 

/****************************************************************/ 
/* Elitist function: The best member of the previous generation */ 
/* is stored as the last in the array. If the best member of */ 
/* the current generation is worse then the best member of the */ 
/* previous generation, the latter one would replace the worst */ 
/* member of the current population */ 
/****************************************************************/ 

void elitist() 
{ 
int i; 
double best, worst; /* best and worst fitness values */ 
int best_mem, worst_mem; /* indexes of the best and worst member */ 

best = population[0].fitness; 
worst = population[0].fitness; 
for (i = 0; i < POPSIZE - 1; ++i) 
{ 
if(population[i].fitness > population[i+1].fitness) 
{ 
if (population[i].fitness >= best) 
{ 
best = population[i].fitness; 
best_mem = i; 
} 
if (population[i+1].fitness <= worst) 
{ 
worst = population[i+1].fitness; 
worst_mem = i + 1; 
} 
} 
else 
{ 
if (population[i].fitness <= worst) 
{ 
worst = population[i].fitness; 
worst_mem = i; 
} 
if (population[i+1].fitness >= best) 
{ 
best = population[i+1].fitness; 
best_mem = i + 1; 
} 
} 
} 
/* if best individual from the new population is better than */ 
/* the best individual from the previous population, then */ 
/* copy the best from the new population; else replace the */ 
/* worst individual from the current population with the */ 
/* best one from the previous generation */ 

if (best >= population[POPSIZE].fitness) 
{ 
for (i = 0; i < NVARS; i++) 
population[POPSIZE].gene[i] = population[best_mem].gene[i]; 
population[POPSIZE].fitness = population[best_mem].fitness; 
} 
else 
{ 
for (i = 0; i < NVARS; i++) 
population[worst_mem].gene[i] = population[POPSIZE].gene[i]; 
population[worst_mem].fitness = population[POPSIZE].fitness; 
} 
} 
/**************************************************************/ 
/* Selection function: Standard proportional selection for */ 
/* maximization problems incorporating elitist model - makes */ 
/* sure that the best member survives */ 
/**************************************************************/ 

void select(void) 
{ 
int mem, i, j, k; 
double sum = 0; 
double p; 

/* find total fitness of the population */ 
for (mem = 0; mem < POPSIZE; mem++) 
{ 
sum += population[mem].fitness; 
} 

/* calculate relative fitness */ 
for (mem = 0; mem < POPSIZE; mem++) 
{ 
population[mem].rfitness = population[mem].fitness/sum; 
} 
population[0].cfitness = population[0].rfitness; 

/* calculate cumulative fitness */ 
for (mem = 1; mem < POPSIZE; mem++) 
{ 
population[mem].cfitness = population[mem-1].cfitness + 
population[mem].rfitness; 
} 

/* finally select survivors using cumulative fitness. */ 

for (i = 0; i < POPSIZE; i++) 
{ 
p = rand()%1000/1000.0; 
if (p < population[0].cfitness) 
newpopulation[i] = population[0]; 
else 
{ 
for (j = 0; j < POPSIZE;j++) 
if (p >= population[j].cfitness && 
p<population[j+1].cfitness) 
newpopulation[i] = population[j+1]; 
} 
} 
/* once a new population is created, copy it back */ 

for (i = 0; i < POPSIZE; i++) 
population[i] = newpopulation[i]; 
} 

/***************************************************************/ 
/* Crossover selection: selects two parents that take part in */ 
/* the crossover. Implements a single point crossover */ 
/***************************************************************/ 

void crossover(void) 
{ 
int i, mem, one; 
int first = 0; /* count of the number of members chosen */ 
double x; 

for (mem = 0; mem < POPSIZE; ++mem) 
{ 
x = rand()%1000/1000.0; 
if (x < PXOVER) 
{ 
++first; 
if (first % 2 == 0) 
Xover(one, mem); 
else 
one = mem; 
} 
} 
} 
/**************************************************************/ 
/* Crossover: performs crossover of the two selected parents. */ 
/**************************************************************/ 

void Xover(int one, int two) 
{ 
int i; 
int point; /* crossover point */ 

/* select crossover point */ 
if(NVARS > 1) 
{ 
if(NVARS == 2) 
point = 1; 
else 
point = (rand() % (NVARS - 1)) + 1; 

for (i = 0; i < point; i++) 
swap(&population[one].gene[i], &population[two].gene[i]); 

} 
} 

/*************************************************************/ 
/* Swap: A swap procedure that helps in swapping 2 variables */ 
/*************************************************************/ 

void swap(double *x, double *y) 
{ 
double temp; 

temp = *x; 
*x = *y; 
*y = temp; 

} 

/**************************************************************/ 
/* Mutation: Random uniform mutation. A variable selected for */ 
/* mutation is replaced by a random value between lower and */ 
/* upper bounds of this variable */ 
/**************************************************************/ 

void mutate(void) 
{ 
int i, j; 
double lbound, hbound; 
double x; 

for (i = 0; i < POPSIZE; i++) 
for (j = 0; j < NVARS; j++) 
{ 
x = rand()%1000/1000.0; 
if (x < PMUTATION) 
{ 
/* find the bounds on the variable to be mutated */ 
lbound = population[i].lower[j]; 
hbound = population[i].upper[j]; 
population[i].gene[j] = randval(lbound, hbound); 
} 
} 
} 

/***************************************************************/ 
/* Report function: Reports progress of the simulation. Data */ 
/* dumped into the output file are separated by commas */ 
/***************************************************************/ 

void report(void) 
{ 
int i; 
double best_val; /* best population fitness */ 
double avg; /* avg population fitness */ 
double stddev; /* std. deviation of population fitness */ 
double sum_square; /* sum of square for std. calc */ 
double square_sum; /* square of sum for std. calc */ 
double sum; /* total population fitness */ 

sum = 0.0; 
sum_square = 0.0; 

for (i = 0; i < POPSIZE; i++) 
{ 
sum += population[i].fitness; 
sum_square += population[i].fitness * population[i].fitness; 
} 

avg = sum/(double)POPSIZE; 
square_sum = avg * avg * POPSIZE; 
stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1)); 
best_val = population[POPSIZE].fitness; 

fprintf(galog, "\n%5d, %6.3f, %6.3f, %6.3f \n\n", generation, 
best_val, avg, stddev); 
} 

/**************************************************************/ 
/* Main function: Each generation involves selecting the best */ 
/* members, performing crossover & mutation and then */ 
/* evaluating the resulting population, until the terminating */ 
/* condition is satisfied */ 
/**************************************************************/ 

void main(void) 
{ 
int i; 

if ((galog = fopen("galog.txt","w"))==NULL) 
{ 
exit(1); 
} 
generation = 0; 

fprintf(galog, "\n generation best average standard \n"); 
fprintf(galog, " number value fitness deviation \n"); 

initialize(); 
evaluate(); 
keep_the_best(); 
while(generation<MAXGENS) 
{ 
generation++; 
select(); 
crossover(); 
mutate(); 
report(); 
evaluate(); 
elitist(); 
} 
fprintf(galog,"\n\n Simulation completed\n"); 
fprintf(galog,"\n Best member: \n"); 

for (i = 0; i < NVARS; i++) 
{ 
fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]); 
} 
fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness); 
fclose(galog); 
printf("Success\n"); 
} 
/***************************************************************/

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
91免费在线看| 91精品欧美久久久久久动漫| 欧美在线一二三四区| 日韩欧美中文字幕制服| 国产精品入口麻豆九色| 肉肉av福利一精品导航| 成人av在线影院| 2021久久国产精品不只是精品| 成人免费精品视频| 欧美一区二区精品在线| 一区二区三区高清不卡| av一区二区三区四区| 精品精品国产高清a毛片牛牛 | 亚洲一区二区三区自拍| 国产99精品国产| 精品久久国产97色综合| 偷拍自拍另类欧美| 欧美在线你懂的| 亚洲人成7777| 97se亚洲国产综合自在线| 国产亚洲美州欧州综合国| 九九国产精品视频| 日韩一区二区中文字幕| 日韩主播视频在线| 欧美丰满一区二区免费视频| 亚洲国产一二三| 欧洲亚洲国产日韩| 亚洲一区二区中文在线| 在线观看www91| 亚洲一区二区三区自拍| 欧美日韩三级在线| 亚洲成在人线在线播放| 欧美精品第一页| 五月婷婷欧美视频| 欧美一级片免费看| 91精品国产综合久久久久久| 亚洲一级二级三级在线免费观看| 日本二三区不卡| 亚洲与欧洲av电影| 欧美色综合久久| 日韩电影一二三区| 精品国产三级电影在线观看| 国产一区二区不卡老阿姨| 久久亚洲精品国产精品紫薇| 国产高清无密码一区二区三区| 国产色一区二区| 91影院在线观看| 亚洲制服欧美中文字幕中文字幕| 欧美日韩一区二区在线观看| 视频一区在线播放| 精品粉嫩aⅴ一区二区三区四区| 国产麻豆精品视频| 亚洲男女毛片无遮挡| 欧美日韩久久久| 国产裸体歌舞团一区二区| 国产精品久久国产精麻豆99网站| 欧美性色黄大片| 久久精品国产免费看久久精品| 久久久国产精品不卡| 99国产精品视频免费观看| 亚洲国产毛片aaaaa无费看 | 麻豆国产欧美一区二区三区| 精品日韩一区二区| 成人激情小说乱人伦| 亚洲精品久久久久久国产精华液| 欧美日本乱大交xxxxx| 黄色小说综合网站| 亚洲精品国产成人久久av盗摄| 69av一区二区三区| 成人一区二区三区中文字幕| 亚洲va欧美va人人爽午夜 | 欧美日韩中文国产| 国产精品综合av一区二区国产馆| 亚洲少妇30p| 欧美成人女星排名| 色哟哟国产精品| 精久久久久久久久久久| 亚洲精品欧美激情| 久久综合视频网| 欧美日韩专区在线| thepron国产精品| 肉丝袜脚交视频一区二区| 久久综合久久综合九色| 欧美性色aⅴ视频一区日韩精品| 国产乱人伦精品一区二区在线观看 | 在线视频你懂得一区二区三区| 久久精品国产免费看久久精品| 亚洲黄网站在线观看| 久久久精品综合| 777午夜精品视频在线播放| av不卡免费在线观看| 久久成人免费网| 亚洲444eee在线观看| 国产精品超碰97尤物18| 久久午夜羞羞影院免费观看| 欧美久久久久久蜜桃| 91麻豆福利精品推荐| 国产成a人无v码亚洲福利| 久久99精品久久久| 青青草伊人久久| 首页综合国产亚洲丝袜| 亚洲一区二区三区爽爽爽爽爽| 中文字幕一区二区三区精华液| 久久精品在这里| 久久影音资源网| 精品国产乱码久久久久久浪潮| 欧美一级一区二区| 欧美一区二区三区播放老司机| 欧美日韩高清在线播放| 欧美亚洲禁片免费| 欧美日韩视频在线观看一区二区三区| 色悠悠久久综合| 在线中文字幕一区| 欧美亚洲一区二区在线观看| 在线视频综合导航| 欧美日韩一区高清| 欧美妇女性影城| 日韩三级伦理片妻子的秘密按摩| 欧美老年两性高潮| 欧美一卡二卡三卡| xnxx国产精品| 国产精品美女久久久久av爽李琼| 中文字幕av一区 二区| 国产精品激情偷乱一区二区∴| 自拍偷拍国产精品| 亚洲黄色免费电影| 视频一区中文字幕国产| 久久国产婷婷国产香蕉| 国产精品一区二区久久精品爱涩 | 青草av.久久免费一区| 一区二区成人在线观看| 亚洲国产精品一区二区久久恐怖片 | 日本精品一级二级| 欧美日韩国产乱码电影| 日韩欧美中文字幕制服| 久久蜜桃av一区精品变态类天堂| 欧美激情自拍偷拍| 一区二区不卡在线视频 午夜欧美不卡在| 亚洲欧美日韩综合aⅴ视频| 亚洲一区在线电影| 麻豆高清免费国产一区| 国产高清在线观看免费不卡| 91在线视频免费观看| 欧美久久婷婷综合色| 337p粉嫩大胆色噜噜噜噜亚洲| 欧美国产乱子伦| 亚洲va欧美va人人爽午夜| 国产美女在线精品| 在线观看欧美黄色| 久久精品无码一区二区三区| 亚洲卡通动漫在线| 久久99热狠狠色一区二区| 成人动漫av在线| 制服.丝袜.亚洲.中文.综合| 亚洲国产精品精华液ab| 亚洲mv在线观看| 成人美女视频在线看| 欧美浪妇xxxx高跟鞋交| 国产精品看片你懂得| 午夜一区二区三区视频| 国模套图日韩精品一区二区| 色婷婷狠狠综合| 久久精品亚洲精品国产欧美kt∨| 一区二区欧美国产| 国产电影一区二区三区| 欧美日韩一区二区三区四区| 国产精品免费aⅴ片在线观看| 日韩福利电影在线观看| 91麻豆国产精品久久| 久久亚洲影视婷婷| 日韩二区三区四区| 欧日韩精品视频| 中文字幕巨乱亚洲| 精品亚洲porn| 91精品在线观看入口| 亚洲综合小说图片| 91麻豆国产自产在线观看| 国产网站一区二区三区| 精品一区二区三区在线视频| 欧美日韩在线免费视频| 亚洲色图在线视频| 不卡av在线网| 日本一区二区三区久久久久久久久不 | 亚洲成人免费电影| 97se亚洲国产综合在线| 欧美激情中文字幕| 国产精品一线二线三线| 欧美大片一区二区三区| 日本女优在线视频一区二区| 在线观看免费成人| 亚洲综合色在线| 色先锋aa成人| 亚洲精品视频一区二区| av毛片久久久久**hd| 国产精品入口麻豆九色| 成人污污视频在线观看| 国产精品伦一区二区三级视频| 国产二区国产一区在线观看| 国产亚洲一区二区三区四区 | 午夜精品视频一区|