?? rfc2030.txt
字號:
Poll Interval: This is an eight-bit signed integer indicating the
maximum interval between successive messages, in seconds to the
nearest power of two. The values that can appear in this field
presently range from 4 (16 s) to 14 (16284 s); however, most
applications use only the sub-range 6 (64 s) to 10 (1024 s).
Precision: This is an eight-bit signed integer indicating the
precision of the local clock, in seconds to the nearest power of two.
The values that normally appear in this field range from -6 for
mains-frequency clocks to -20 for microsecond clocks found in some
workstations.
Root Delay: This is a 32-bit signed fixed-point number indicating the
total roundtrip delay to the primary reference source, in seconds
with fraction point between bits 15 and 16. Note that this variable
can take on both positive and negative values, depending on the
relative time and frequency offsets. The values that normally appear
in this field range from negative values of a few milliseconds to
positive values of several hundred milliseconds.
Root Dispersion: This is a 32-bit unsigned fixed-point number
indicating the nominal error relative to the primary reference
source, in seconds with fraction point between bits 15 and 16. The
values that normally appear in this field range from 0 to several
hundred milliseconds.
Reference Identifier: This is a 32-bit bitstring identifying the
particular reference source. In the case of NTP Version 3 or Version
4 stratum-0 (unspecified) or stratum-1 (primary) servers, this is a
four-character ASCII string, left justified and zero padded to 32
bits. In NTP Version 3 secondary servers, this is the 32-bit IPv4
address of the reference source. In NTP Version 4 secondary servers,
this is the low order 32 bits of the latest transmit timestamp of the
reference source. NTP primary (stratum 1) servers should set this
field to a code identifying the external reference source according
to the following list. If the external reference is one of those
listed, the associated code should be used. Codes for sources not
listed can be contrived as appropriate.
Mills Informational [Page 10]
RFC 2030 SNTPv4 for IPv4, IPv6 and OSI October 1996
Code External Reference Source
----------------------------------------------------------------
LOCL uncalibrated local clock used as a primary reference for
a subnet without external means of synchronization
PPS atomic clock or other pulse-per-second source
individually calibrated to national standards
ACTS NIST dialup modem service
USNO USNO modem service
PTB PTB (Germany) modem service
TDF Allouis (France) Radio 164 kHz
DCF Mainflingen (Germany) Radio 77.5 kHz
MSF Rugby (UK) Radio 60 kHz
WWV Ft. Collins (US) Radio 2.5, 5, 10, 15, 20 MHz
WWVB Boulder (US) Radio 60 kHz
WWVH Kaui Hawaii (US) Radio 2.5, 5, 10, 15 MHz
CHU Ottawa (Canada) Radio 3330, 7335, 14670 kHz
LORC LORAN-C radionavigation system
OMEG OMEGA radionavigation system
GPS Global Positioning Service
GOES Geostationary Orbit Environment Satellite
Reference Timestamp: This is the time at which the local clock was
last set or corrected, in 64-bit timestamp format.
Originate Timestamp: This is the time at which the request departed
the client for the server, in 64-bit timestamp format.
Receive Timestamp: This is the time at which the request arrived at
the server, in 64-bit timestamp format.
Transmit Timestamp: This is the time at which the reply departed the
server for the client, in 64-bit timestamp format.
Authenticator (optional): When the NTP authentication scheme is
implemented, the Key Identifier and Message Digest fields contain the
message authentication code (MAC) information defined in Appendix C
of RFC-1305.
5. SNTP Client Operations
A SNTP client can operate in multicast mode, unicast mode or anycast
mode. In multicast mode, the client sends no request and waits for a
broadcast (mode 5) from a designated multicast server. In unicast
mode, the client sends a request (mode 3) to a designated unicast
server and expects a reply (mode 4) from that server. In anycast
mode, the client sends a request (mode 3) to a designated local
broadcast or multicast group address and expects a reply (mode 4)
from one or more anycast servers. The client uses the first reply
Mills Informational [Page 11]
RFC 2030 SNTPv4 for IPv4, IPv6 and OSI October 1996
received to establish the particular server for subsequent unicast
operations. Later replies from this server (duplicates) or any other
server are ignored. Other than the selection of address in the
request, the operations of anycast and unicast clients are identical.
Requests are normally sent at intervals from 64 s to 1024 s,
depending on the frequency tolerance of the client clock and the
required accuracy.
A unicast or anycast client initializes the NTP message header, sends
the request to the server and strips the time of day from the
Transmit Timestamp field of the reply. For this purpose, all of the
NTP header fields shown above can be set to 0, except the first octet
and (optional) Transmit Timestamp fields. In the first octet, the LI
field is set to 0 (no warning) and the Mode field is set to 3
(client). The VN field must agree with the version number of the
NTP/SNTP server; however, Version 4 servers will also accept previous
versions. Version 3 (RFC-1305) and Version 2 (RFC-1119) servers
already accept all previous versions, including Version 1 (RFC-1059).
Note that Version 0 (RFC-959) is no longer supported by any other
version.
Since there will probably continue to be NTP and SNTP servers of all
four versions interoperating in the Internet, careful consideration
should be given to the version used by SNTP Version 4 clients. It is
recommended that clients use the latest version known to be supported
by the selected server in the interest of the highest accuracy and
reliability. SNTP Version 4 clients can interoperate with all
previous version NTP and SNTP servers, since the header fields used
by SNTP clients are unchanged. Version 4 servers are required to
reply in the same version as the request, so the VN field of the
request also specifies the version of the reply.
While not necessary in a conforming client implementation, in unicast
and anycast modes it highly recommended that the transmit timestamp
in the request is set to the time of day according to the client
clock in NTP timestamp format. This allows a simple calculation to
determine the propagation delay between the server and client and to
align the local clock generally within a few tens of milliseconds
relative to the server. In addition, this provides a simple method to
verify that the server reply is in fact a legitimate response to the
specific client request and avoid replays. In multicast mode, the
client has no information to calculate the propagation delay or
determine the validity of the server, unless the NTP authentication
scheme is used.
To calculate the roundtrip delay d and local clock offset t relative
to the server, the client sets the transmit timestamp in the request
to the time of day according to the client clock in NTP timestamp
Mills Informational [Page 12]
RFC 2030 SNTPv4 for IPv4, IPv6 and OSI October 1996
format. The server copies this field to the originate timestamp in
the reply and sets the receive timestamp and transmit timestamp to
the time of day according to the server clock in NTP timestamp
format.
When the server reply is received, the client determines a
Destination Timestamp variable as the time of arrival according to
its clock in NTP timestamp format. The following table summarizes the
four timestamps.
Timestamp Name ID When Generated
------------------------------------------------------------
Originate Timestamp T1 time request sent by client
Receive Timestamp T2 time request received by server
Transmit Timestamp T3 time reply sent by server
Destination Timestamp T4 time reply received by client
The roundtrip delay d and local clock offset t are defined as
d = (T4 - T1) - (T2 - T3) t = ((T2 - T1) + (T3 - T4)) / 2.
The following table summarizes the SNTP client operations in unicast,
anycast and multicast modes. The recommended error checks are shown
in the Reply and Multicast columns in the table. The message should
be considered valid only if all the fields shown contain values in
the respective ranges. Whether to believe the message if one or more
of the fields marked "ignore" contain invalid values is at the
discretion of the implementation.
Field Name Unicast/Anycast Multicast
Request Reply
----------------------------------------------------------
LI 0 0-2 0-2
VN 1-4 copied from 1-4
request
Mode 3 4 5
Stratum 0 1-14 1-14
Poll 0 ignore ignore
Precision 0 ignore ignore
Root Delay 0 ignore ignore
Root Dispersion 0 ignore ignore
Reference Identifier 0 ignore ignore
Reference Timestamp 0 ignore ignore
Originate Timestamp 0 (see text) ignore
Receive Timestamp 0 (see text) ignore
Transmit Timestamp (see text) nonzero nonzero
Authenticator optional optional optional
Mills Informational [Page 13]
RFC 2030 SNTPv4 for IPv4, IPv6 and OSI October 1996
6. SNTP Server Operations
A SNTP Version 4 server operating with either a NTP or SNTP client of
the same or previous versions retains no persistent state. Since a
SNTP server ordinarily does not implement the full set of NTP
algorithms intended to support redundant peers and diverse network
paths, a SNTP server should be operated only in conjunction with a
source of external synchronization, such as a reliable radio clock or
telephone modem. In this case it always operates as a primary
(stratum 1) server.
A SNTP server can operate in unicast mode, anycast mode, multicast
mode or any combination of these modes. In unicast and anycast modes,
the server receives a request (mode 3), modifies certain fields in
the NTP header, and sends a reply (mode 4), possibly using the same
message buffer as the request. In anycast mode, the server listens on
the designated local broadcast or multicast group address assigned by
the IANA, but uses its own unicast address in the source address
field of the reply. Other than the selection of address in the reply,
the operations of anycast and unicast servers are identical.
Multicast messages are normally sent at poll intervals from 64 s to
1024 s, depending on the expected frequency tolerance of the client
clocks and the required accuracy.
In unicast and anycast modes, the VN and Poll fields of the request
are copied intact to the reply. If the Mode field of the request is 3
(client), it is set to 4 (server) in the reply; otherwise, this field
is set to 2 (symmetric passive) in order to conform to the NTP
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -