?? pgtable.h
字號:
#ifndef _I386_PGTABLE_H#define _I386_PGTABLE_H#include <linux/config.h>/* * The Linux memory management assumes a three-level page table setup. On * the i386, we use that, but "fold" the mid level into the top-level page * table, so that we physically have the same two-level page table as the * i386 mmu expects. * * This file contains the functions and defines necessary to modify and use * the i386 page table tree. */#ifndef __ASSEMBLY__#include <asm/processor.h>#include <asm/fixmap.h>#include <linux/threads.h>#ifndef _I386_BITOPS_H#include <asm/bitops.h>#endif#include <linux/slab.h>#include <linux/list.h>#include <linux/spinlock.h>/* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))extern unsigned long empty_zero_page[1024];extern pgd_t swapper_pg_dir[1024];extern kmem_cache_t *pgd_cache;extern kmem_cache_t *pmd_cache;extern spinlock_t pgd_lock;extern struct page *pgd_list;void pmd_ctor(void *, kmem_cache_t *, unsigned long);void pgd_ctor(void *, kmem_cache_t *, unsigned long);void pgd_dtor(void *, kmem_cache_t *, unsigned long);void pgtable_cache_init(void);void paging_init(void);/* * The Linux x86 paging architecture is 'compile-time dual-mode', it * implements both the traditional 2-level x86 page tables and the * newer 3-level PAE-mode page tables. */#ifdef CONFIG_X86_PAE# include <asm/pgtable-3level-defs.h>#else# include <asm/pgtable-2level-defs.h>#endif#define PMD_SIZE (1UL << PMD_SHIFT)#define PMD_MASK (~(PMD_SIZE-1))#define PGDIR_SIZE (1UL << PGDIR_SHIFT)#define PGDIR_MASK (~(PGDIR_SIZE-1))#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)#define FIRST_USER_PGD_NR 0#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)#define TWOLEVEL_PGDIR_SHIFT 22#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)#define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)/* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */#define VMALLOC_OFFSET (8*1024*1024)#define VMALLOC_START (((unsigned long) high_memory + vmalloc_earlyreserve + \ 2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))#ifdef CONFIG_HIGHMEM# define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)#else# define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)#endif/* * The 4MB page is guessing.. Detailed in the infamous "Chapter H" * of the Pentium details, but assuming intel did the straightforward * thing, this bit set in the page directory entry just means that * the page directory entry points directly to a 4MB-aligned block of * memory. */#define _PAGE_BIT_PRESENT 0#define _PAGE_BIT_RW 1#define _PAGE_BIT_USER 2#define _PAGE_BIT_PWT 3#define _PAGE_BIT_PCD 4#define _PAGE_BIT_ACCESSED 5#define _PAGE_BIT_DIRTY 6#define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page, Pentium+, if present.. */#define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */#define _PAGE_BIT_UNUSED1 9 /* available for programmer */#define _PAGE_BIT_UNUSED2 10#define _PAGE_BIT_UNUSED3 11#define _PAGE_BIT_NX 63#define _PAGE_PRESENT 0x001#define _PAGE_RW 0x002#define _PAGE_USER 0x004#define _PAGE_PWT 0x008#define _PAGE_PCD 0x010#define _PAGE_ACCESSED 0x020#define _PAGE_DIRTY 0x040#define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */#define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */#define _PAGE_UNUSED1 0x200 /* available for programmer */#define _PAGE_UNUSED2 0x400#define _PAGE_UNUSED3 0x800#define _PAGE_FILE 0x040 /* set:pagecache unset:swap */#define _PAGE_PROTNONE 0x080 /* If not present */#ifdef CONFIG_X86_PAE#define _PAGE_NX (1ULL<<_PAGE_BIT_NX)#else#define _PAGE_NX 0#endif#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)#define PAGE_NONE \ __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)#define PAGE_SHARED \ __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)#define PAGE_SHARED_EXEC \ __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)#define PAGE_COPY_NOEXEC \ __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)#define PAGE_COPY_EXEC \ __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)#define PAGE_COPY \ PAGE_COPY_NOEXEC#define PAGE_READONLY \ __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)#define PAGE_READONLY_EXEC \ __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)#define _PAGE_KERNEL \ (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)#define _PAGE_KERNEL_EXEC \ (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)extern unsigned long long __PAGE_KERNEL, __PAGE_KERNEL_EXEC;#define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW)#define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD)#define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE)#define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)#define PAGE_KERNEL __pgprot(__PAGE_KERNEL)#define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO)#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)#define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE)#define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE)#define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC)/* * The i386 can't do page protection for execute, and considers that * the same are read. Also, write permissions imply read permissions. * This is the closest we can get.. */#define __P000 PAGE_NONE#define __P001 PAGE_READONLY#define __P010 PAGE_COPY#define __P011 PAGE_COPY#define __P100 PAGE_READONLY_EXEC#define __P101 PAGE_READONLY_EXEC#define __P110 PAGE_COPY_EXEC#define __P111 PAGE_COPY_EXEC#define __S000 PAGE_NONE#define __S001 PAGE_READONLY#define __S010 PAGE_SHARED#define __S011 PAGE_SHARED#define __S100 PAGE_READONLY_EXEC#define __S101 PAGE_READONLY_EXEC#define __S110 PAGE_SHARED_EXEC#define __S111 PAGE_SHARED_EXEC/* * Define this if things work differently on an i386 and an i486: * it will (on an i486) warn about kernel memory accesses that are * done without a 'verify_area(VERIFY_WRITE,..)' */#undef TEST_VERIFY_AREA/* The boot page tables (all created as a single array) */extern unsigned long pg0[];#define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))#define pte_clear(xp) do { set_pte(xp, __pte(0)); } while (0)#define pmd_none(x) (!pmd_val(x))#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)#define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0)#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)/* * The following only work if pte_present() is true. * Undefined behaviour if not.. */static inline int pte_user(pte_t pte) { return (pte).pte_low & _PAGE_USER; }static inline int pte_read(pte_t pte) { return (pte).pte_low & _PAGE_USER; }static inline int pte_dirty(pte_t pte) { return (pte).pte_low & _PAGE_DIRTY; }static inline int pte_young(pte_t pte) { return (pte).pte_low & _PAGE_ACCESSED; }static inline int pte_write(pte_t pte) { return (pte).pte_low & _PAGE_RW; }/* * The following only works if pte_present() is not true. */static inline int pte_file(pte_t pte) { return (pte).pte_low & _PAGE_FILE; }static inline pte_t pte_rdprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }static inline pte_t pte_exprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }static inline pte_t pte_mkclean(pte_t pte) { (pte).pte_low &= ~_PAGE_DIRTY; return pte; }static inline pte_t pte_mkold(pte_t pte) { (pte).pte_low &= ~_PAGE_ACCESSED; return pte; }static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_RW; return pte; }static inline pte_t pte_mkread(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }static inline pte_t pte_mkexec(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte_low |= _PAGE_DIRTY; return pte; }static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte_low |= _PAGE_ACCESSED; return pte; }static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte_low |= _PAGE_RW; return pte; }#ifdef CONFIG_X86_PAE# include <asm/pgtable-3level.h>#else# include <asm/pgtable-2level.h>#endifstatic inline int ptep_test_and_clear_dirty(pte_t *ptep){ if (!pte_dirty(*ptep)) return 0; return test_and_clear_bit(_PAGE_BIT_DIRTY, &ptep->pte_low);}static inline int ptep_test_and_clear_young(pte_t *ptep){ if (!pte_young(*ptep)) return 0; return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte_low);}static inline void ptep_set_wrprotect(pte_t *ptep) { clear_bit(_PAGE_BIT_RW, &ptep->pte_low); }static inline void ptep_mkdirty(pte_t *ptep) { set_bit(_PAGE_BIT_DIRTY, &ptep->pte_low); }/* * Macro to mark a page protection value as "uncacheable". On processors which do not support * it, this is a no-op. */#define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \ ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))/* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))#define mk_pte_huge(entry) ((entry).pte_low |= _PAGE_PRESENT | _PAGE_PSE)static inline pte_t pte_modify(pte_t pte, pgprot_t newprot){ pte.pte_low &= _PAGE_CHG_MASK; pte.pte_low |= pgprot_val(newprot);#ifdef CONFIG_X86_PAE /* * Chop off the NX bit (if present), and add the NX portion of * the newprot (if present): */ pte.pte_high &= ~(1 << (_PAGE_BIT_NX - 32)); pte.pte_high |= (pgprot_val(newprot) >> 32) & \ (__supported_pte_mask >> 32);#endif return pte;}#define page_pte(page) page_pte_prot(page, __pgprot(0))#define pmd_page_kernel(pmd) \((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))#ifndef CONFIG_DISCONTIGMEM#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))#endif /* !CONFIG_DISCONTIGMEM */#define pmd_large(pmd) \ ((pmd_val(pmd) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT))/* * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] * * this macro returns the index of the entry in the pgd page which would * control the given virtual address */#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))/* * pgd_offset() returns a (pgd_t *) * pgd_index() is used get the offset into the pgd page's array of pgd_t's; */#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))/* * a shortcut which implies the use of the kernel's pgd, instead * of a process's */#define pgd_offset_k(address) pgd_offset(&init_mm, address)/* * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] * * this macro returns the index of the entry in the pmd page which would * control the given virtual address */#define pmd_index(address) \ (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))/* * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] * * this macro returns the index of the entry in the pte page which would * control the given virtual address */#define pte_index(address) \ (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))#define pte_offset_kernel(dir, address) \ ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(address))/* * Helper function that returns the kernel pagetable entry controlling * the virtual address 'address'. NULL means no pagetable entry present. * NOTE: the return type is pte_t but if the pmd is PSE then we return it * as a pte too. */extern pte_t *lookup_address(unsigned long address);/* * Make a given kernel text page executable/non-executable. * Returns the previous executability setting of that page (which * is used to restore the previous state). Used by the SMP bootup code. * NOTE: this is an __init function for security reasons. */#ifdef CONFIG_X86_PAE extern int set_kernel_exec(unsigned long vaddr, int enable);#else static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;}#endif#if defined(CONFIG_HIGHPTE)#define pte_offset_map(dir, address) \ ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE0) + pte_index(address))#define pte_offset_map_nested(dir, address) \ ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE1) + pte_index(address))#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)#else#define pte_offset_map(dir, address) \ ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))#define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)#define pte_unmap(pte) do { } while (0)#define pte_unmap_nested(pte) do { } while (0)#endif/* * The i386 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. * * Also, we only update the dirty/accessed state if we set * the dirty bit by hand in the kernel, since the hardware * will do the accessed bit for us, and we don't want to * race with other CPU's that might be updating the dirty * bit at the same time. */#define update_mmu_cache(vma,address,pte) do { } while (0)#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ do { \ if (__dirty) { \ (__ptep)->pte_low = (__entry).pte_low; \ flush_tlb_page(__vma, __address); \ } \ } while (0)#endif /* !__ASSEMBLY__ */#ifndef CONFIG_DISCONTIGMEM#define kern_addr_valid(addr) (1)#endif /* !CONFIG_DISCONTIGMEM */#define io_remap_page_range remap_page_range#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY#define __HAVE_ARCH_PTEP_GET_AND_CLEAR#define __HAVE_ARCH_PTEP_SET_WRPROTECT#define __HAVE_ARCH_PTEP_MKDIRTY#define __HAVE_ARCH_PTE_SAME#include <asm-generic/pgtable.h>#endif /* _I386_PGTABLE_H */
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -