?? pca.h
字號(hào):
#ifndef __MY_PCA_H_
#define __MY_PCA_H_
#include "DataSource.h"
#include <mkl.h>
#include <cassert>
#include <iostream>
#include <vector>
/////////////////////////////////////////////////////////////////////
//my PCA class
/////////////////////////////////////////////////////////////////////
template <typename T>
class CPCA
{
public:
//const T *const *const m_pSamples;
std::vector<float> m_Aver;
std::vector<float> m_Covar; //of size m_SrcDim*m_SrcDim
std::vector<float> m_EigenValue; //of size m_SrcDim
std::vector<float> m_EigenVector; //of size m_SrcDim*m_SrcDim
private:
int m_SrcDim;
int m_DstDim;
public:
CPCA(const CDataSource<T> *const pDataSource, int dstDim=0)
:m_SrcDim(pDataSource->m_Dim),m_DstDim(dstDim)
{
PreProcess(pDataSource);
}
CPCA(T *const *const src, int srcDim, int nSamples, int dstDim = 0)
:m_SrcDim(srcDim),m_DstDim(dstDim)
{
CSimDataSource<T> dataSource(src, nSamples, srcDim);
PreProcess(&dataSource);
}
~CPCA(){};
void ShowData() const
{
std::cout.setf (std::ios::fixed | std::ios::left);
std::cout.precision (3);
std::cout<<"The Average Vector:\n";
int i,j;
for(i=0; i<m_SrcDim; i++){
std::cout<<m_Aver[i]<<"\t";
}
std::cout<<std::endl<<"\nA:The CoVaraiance Matrix:\n";
for(i=0; i<m_SrcDim; i++){
std::cout<<i<<"Row:\t";
for(j=0; j<m_SrcDim; j++)
std::cout<<m_Covar[i*m_SrcDim+j]<<"\t";
std::cout<<std::endl;
}
std::cout<<std::endl<<"D:The EigenValue Vector:\n";
for(i=0; i<m_SrcDim; i++){
std::cout<<m_EigenValue[i]<<"\t";
}
std::cout<<std::endl<<"\nV:The EigenVector Matrix:\n";
for(i=0; i<m_SrcDim; i++){
std::cout<<i<<"Row:\t";
for(j=0; j<m_SrcDim; j++)
std::cout<<m_EigenVector[i*m_SrcDim+j]<<"\t";
std::cout<<std::endl;
}
std::vector<float> AV(m_SrcDim*m_SrcDim, 0);
std::vector<float> VD(m_SrcDim*m_SrcDim, 0);
std::vector<float> D(m_SrcDim*m_SrcDim, 0);
for(i=0; i<m_SrcDim; i++){
D[i*m_SrcDim+i] = m_EigenValue[i];
}
//dsymm(side, uplo, m, n, alpha, a, lda,
// b, ldb, beta, c, ldc )
const float alpha = 1.0L;
const float beta = 0.0L;
dsymm("L", "U", &m_SrcDim, &m_SrcDim, &alpha, &m_Covar.front(), &m_SrcDim,
&m_EigenVector.front(), &m_SrcDim, &beta, &AV.front(), &m_SrcDim);
//dgemm(transa, transb, m, n, k, alpha, a, lda,
// b, ldb, beta, c, ldc)
dgemm("N", "N", &m_SrcDim, &m_SrcDim, &m_SrcDim, &alpha, &m_EigenVector.front(), &m_SrcDim,
&D.front(), &m_SrcDim, &beta, &VD.front(), &m_SrcDim);
std::cout<<"\nAV:\n";
for(i=0; i<m_SrcDim; i++){
std::cout<<i<<"Row:\t";
for(j=0; j<m_SrcDim; j++)
std::cout<<AV[i*m_SrcDim+j]<<"\t";
std::cout<<std::endl;
}
std::cout<<"\nVD:\n";
for(i=0; i<m_SrcDim; i++){
std::cout<<i<<"Row:\t";
for(j=0; j<m_SrcDim; j++)
std::cout<<VD[i*m_SrcDim+j]<<"\t";
std::cout<<std::endl;
}
}
inline void ConvertPoint(const T *const src, T *const dst) const
{
int j;
for (j=0; j<m_DstDim; j++){
dst[j] = 0;
for(int k=0; k<m_SrcDim; k++){
//dst[j] += (src[k] - m_Aver[k]) * m_EigenVector[k+(m_SrcDim-j-1)*m_SrcDim];
dst[j] += (src[k] - m_Aver[k]) * m_EigenVector[k+j*m_SrcDim];
}
}
}
void ConvertData(T** src, T** dst, int nSample) const
{
for (int i=0; i<nSample; i++)
ConvertPoint(src[i], dst[i]);
}
private:
void PreProcess(const CDataSource<T> *const pDataSource)
{
assert(pDataSource->m_Dim == m_SrcDim);
if(pDataSource->m_Dim != m_SrcDim)
return;
assert(m_DstDim>0 && m_DstDim<=m_SrcDim);
if(m_DstDim<=0 || m_DstDim>m_SrcDim)
m_DstDim = m_SrcDim;
const int nSamples = pDataSource->m_nSamples;
std::cout<<"\n***********PCA PreProcessing with nSamples="<<nSamples<<" srcDim="<<m_SrcDim<<" dstDim="<<m_DstDim;
clock_t tt=clock();
//////////////////////////////////////////////////////////////////////////
// calculating average
//////////////////////////////////////////////////////////////////////////
std::cout<<"\nCalculating Average...";
clock_t t = clock();
std::vector<long double> sums(m_SrcDim, 0);
int i,j;
std::vector<T> sample(m_SrcDim);
for(i=0; i<nSamples; i++){
pDataSource->getData(i, &sample.front());
for(j=0; j<m_SrcDim; j++){
sums[j] += sample[j];
}
}
m_Aver.resize(m_SrcDim);
for(i=0; i<m_SrcDim; i++){
m_Aver[i] = sums[i]/nSamples;
}
std::vector<float> matt(nSamples*m_SrcDim);
for(i=0; i<nSamples; i++){
pDataSource->getData(i, &sample.front());
for(j=0; j<m_SrcDim; j++){
matt[i*m_SrcDim+j] = (sample[j] - m_Aver[j]);
}
}
std::cout<<"\t\tfinished in "<<clock()-t<<" ms";
t=clock();
//////////////////////////////////////////////////////////////////////////
// calculating covariance matrix
//////////////////////////////////////////////////////////////////////////
std::cout<<"\nCalculating Covariance...";
m_Covar.resize(m_SrcDim*m_SrcDim, 0);
const float alpha = 1.0L;
const float beta = 0.0L;
//cblas_ssyrk(CblasRowMajor, CblasUpper, CblasTrans, m_SrcDim, nSamples,
// 1.0L, &matSample.front(), m_SrcDim, 0.0L, &m_Covar.front(), m_SrcDim);
//ssyrk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc )
ssyrk("U", "N", &m_SrcDim, &nSamples, &alpha,
&matt.front(), &m_SrcDim, &beta, &m_Covar.front(), &m_SrcDim);
matt.swap(std::vector<float>()); // cleaning
std::cout<<"\tfinished in "<<clock()-t<<"ms";
t=clock();
//////////////////////////////////////////////////////////////////////////
// calculating eigenvalues and eigenvectors
//////////////////////////////////////////////////////////////////////////
std::cout<<"\nSolving EigenProblem...";
m_EigenValue.resize(m_SrcDim);
m_EigenVector.resize(m_SrcDim*m_SrcDim);
t=clock();
int lwork, liwork, info;
std::vector<float> work;
std::vector<int> iwork;
std::vector<int> isuppz(2*m_SrcDim);
float vl, vu, abstol=0;
int il=m_SrcDim-m_DstDim+1, iu=m_SrcDim;
lwork = 26*m_SrcDim;
liwork = 10*m_SrcDim;
work.resize(lwork);
iwork.resize(liwork);
matt = m_Covar;
//ssyevr(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m,
// w, z, ldz,
// isuppz, work, lwork, iwork, liwork, info)
//ssyevr("V", "A", "U", &srcDim, &matt.front(), &m_SrcDim, &vl, &vu, &il, &iu, &abstol, &m_SrcDim,
ssyevr("V", "I", "U", &m_SrcDim, &matt.front(), &m_SrcDim, &vl, &vu, &il, &iu, &abstol, &m_DstDim,
&m_EigenValue.front(), &m_EigenVector.front(), &m_SrcDim,
&isuppz.front(), &work.front(), &lwork, &iwork.front(), &liwork, &info);
assert(info == 0);
if(info != 0){
std::cout<<"Failded, Abort!"<<std::endl;
return;
}
//std::cout<<"resutl: "<<info<<std::endl<<m<<" eigenvalues found"<<std::endl;
/* //alternative 1: ssyevx
lwork = 8*m_SrcDim;
liwork = 5*m_SrcDim;
work.resize(lwork);
iwork.resize(liwork);
std::vector<int> ifail(m_SrcDim);
matt = m_Covar;
//ssyevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m,
// w, z, ldz
// work, lwork, iwork, ifail, info)
ssyevx("V", "I", "U", &srcDim, &matt.front(), &m_SrcDim, &vl, &vu, &il, &iu, &abstol, &m_DstDim,
&m_EigenValue.front(), &m_EigenVector.front(), &m_SrcDim,
&work.front(), &lwork, &iwork.front(), &ifail.front(), &info);
// alternative 2: calculating all Eigen Values & Eigen Vectors
j=1,i=0;
while(j<m_SrcDim){
j <<= 1,i++;
}
lwork = 3*m_SrcDim*m_SrcDim + (5 + 2*i)*m_SrcDim+1;
liwork = 5*m_SrcDim+3;
work.resize(lwork);
iwork.resize(liwork);
//dsyevd ( job , uplo , n , a , lda , w ,
// work , lwork , iwork , liwork , info)
matt = m_Covar;
ssyevd("V", "U", &m_SrcDim, &matt.front(), &m_SrcDim, &m_EigenValue.front(),
&work.front(), &lwork, &iwork.front(), &liwork, &info);
//reversing;
for(i=0; i<m_SrcDim; i++)
std::copy(matt.begin()+i*m_SrcDim, matt.begin()+(i+1)*m_SrcDim, m_EigenVector.begin()+(m_SrcDim-i-1)*m_SrcDim);
*/
std::cout<<"\t\tfinished in "<<clock()-t<<"ms"<<std::endl;
//////////////////////////////////////////////////////////////////////////
// All finished
//////////////////////////////////////////////////////////////////////////
std::cout<<"***********Finished in "<<clock()-tt<<" ms"<<std::endl;
}
};
#endif
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -