?? gmc.cpp
字號:
/*****************************************************************************
*
* XVID MPEG-4 VIDEO CODEC
* - GMC interpolation module -
*
* Copyright(C) 2002-2003 Pascal Massimino <skal@planet-d.net>
*
* This program is free software ; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program ; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Id: gmc.cpp,v 1.1.1.1 2005/07/13 14:36:14 jeanlf Exp $
*
****************************************************************************/
#include "portab.h"
#include "global.h"
#include "gmc.h"
/* ************************************************************
* Pts = 2 or 3
*
* Warning! *src is the global frame pointer (that is: adress
* of pixel 0,0), not the macroblock one.
* Conversely, *dst is the macroblock top-left adress.
*/
static void Predict_16x16_C(const NEW_GMC_DATA * const This, byte *dst, const byte *src, int dststride, int srcstride, int x, int y, int rounding){
const int W = This->sW;
const int H = This->sH;
const int rho = 3 - This->accuracy;
const int Rounder = ( (1<<7) - (rounding<<(2*rho)) ) << 16;
const int dUx = This->dU[0];
const int dVx = This->dV[0];
const int dUy = This->dU[1];
const int dVy = This->dV[1];
int Uo = This->Uo + 16*(dUy*y + dUx*x);
int Vo = This->Vo + 16*(dVy*y + dVx*x);
int i, j;
dst += 16;
for (j=16; j>0; --j) {
int U = Uo, V = Vo;
Uo += dUy; Vo += dVy;
for (i=-16; i<0; ++i) {
unsigned int f0, f1, ri = 16, rj = 16;
int Offset;
int u = ( U >> 16 ) << rho;
int v = ( V >> 16 ) << rho;
U += dUx; V += dVx;
if (u > 0 && u <= W) { ri = MTab[u&15]; Offset = u>>4; }
else if (u > W) Offset = W>>4;
else Offset = -1;
if (v > 0 && v <= H) { rj = MTab[v&15]; Offset += (v>>4)*srcstride; }
else if (v > H) Offset += (H>>4)*srcstride;
else Offset -= srcstride;
f0 = src[Offset + 0];
f0 |= src[Offset + 1] << 16;
f1 = src[Offset + srcstride + 0];
f1 |= src[Offset + srcstride + 1] << 16;
f0 = (ri*f0)>>16;
f1 = (ri*f1) & 0x0fff0000;
f0 |= f1;
f0 = (rj*f0 + Rounder) >> 24;
dst[i] = (byte)f0;
}
dst += dststride;
}
}
//----------------------------
static void Predict_8x8_C(const NEW_GMC_DATA * const This, byte *uDst, const byte *uSrc,
byte *vDst, const byte *vSrc, int dststride, int srcstride, int x, int y, int rounding){
const int W = This->sW >> 1;
const int H = This->sH >> 1;
const int rho = 3-This->accuracy;
const int Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;
const int dUx = This->dU[0];
const int dVx = This->dV[0];
const int dUy = This->dU[1];
const int dVy = This->dV[1];
int Uo = This->Uco + 8*(dUy*y + dUx*x);
int Vo = This->Vco + 8*(dVy*y + dVx*x);
int i, j;
uDst += 8;
vDst += 8;
for (j=8; j>0; --j) {
int U = Uo, V = Vo;
Uo += dUy; Vo += dVy;
for (i=-8; i<0; ++i) {
int Offset;
dword f0, f1, ri, rj;
int u, v;
u = ( U >> 16 ) << rho;
v = ( V >> 16 ) << rho;
U += dUx; V += dVx;
if (u > 0 && u <= W) {
ri = MTab[u&15];
Offset = u>>4;
} else {
ri = 16;
if (u>W) Offset = W>>4;
else Offset = -1;
}
if (v > 0 && v <= H) {
rj = MTab[v&15];
Offset += (v>>4)*srcstride;
} else {
rj = 16;
if (v>H) Offset += (H>>4)*srcstride;
else Offset -= srcstride;
}
f0 = uSrc[Offset + 0];
f0 |= uSrc[Offset + 1] << 16;
f1 = uSrc[Offset + srcstride + 0];
f1 |= uSrc[Offset + srcstride + 1] << 16;
f0 = (ri*f0)>>16;
f1 = (ri*f1) & 0x0fff0000;
f0 |= f1;
f0 = (rj*f0 + Rounder) >> 24;
uDst[i] = (byte)f0;
f0 = vSrc[Offset + 0];
f0 |= vSrc[Offset + 1] << 16;
f1 = vSrc[Offset + srcstride + 0];
f1 |= vSrc[Offset + srcstride + 1] << 16;
f0 = (ri*f0)>>16;
f1 = (ri*f1) & 0x0fff0000;
f0 |= f1;
f0 = (rj*f0 + Rounder) >> 24;
vDst[i] = (byte)f0;
}
uDst += dststride;
vDst += dststride;
}
}
//----------------------------
static void get_average_mv_C(const NEW_GMC_DATA * const Dsp, VECTOR * const mv, int x, int y, int qpel){
int i, j;
int vx = 0, vy = 0;
int uo = Dsp->Uo + 16*(Dsp->dU[1]*y + Dsp->dU[0]*x);
int vo = Dsp->Vo + 16*(Dsp->dV[1]*y + Dsp->dV[0]*x);
for (j=16; j>0; --j)
{
int U, V;
U = uo; uo += Dsp->dU[1];
V = vo; vo += Dsp->dV[1];
for (i=16; i>0; --i)
{
int u,v;
u = U >> 16; U += Dsp->dU[0]; vx += u;
v = V >> 16; V += Dsp->dV[0]; vy += v;
}
}
vx -= (256*x+120) << (5+Dsp->accuracy); /* 120 = 15*16/2 */
vy -= (256*y+120) << (5+Dsp->accuracy);
mv->x = RSHIFT( vx, 8+Dsp->accuracy - qpel );
mv->y = RSHIFT( vy, 8+Dsp->accuracy - qpel );
}
//----------------------------
/* ************************************************************
* simplified version for 1 warp point
*/
static void Predict_1pt_16x16_C(const NEW_GMC_DATA * const This, byte *Dst, const byte *Src, int dststride, int srcstride, int x, int y, int rounding){
const int W = This->sW;
const int H = This->sH;
const int rho = 3-This->accuracy;
const int Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;
int uo = This->Uo + (x<<8); /* ((16*x)<<4) */
int vo = This->Vo + (y<<8);
const dword ri = MTab[uo & 15];
const dword rj = MTab[vo & 15];
int i, j;
int Offset;
if ((dword)vo<=(dword)H) Offset = (vo>>4)*srcstride;
else if (vo>H) Offset = ( H>>4)*srcstride;
else Offset =-16*srcstride;
if ((dword)uo<=(dword)W) Offset += (uo>>4);
else if (uo>W) Offset += ( W>>4);
else Offset -= 16;
Dst += 16;
for(j=16; j>0; --j, Offset+=srcstride-16)
{
for(i=-16; i<0; ++i, ++Offset)
{
dword f0, f1;
f0 = Src[ Offset +0 ];
f0 |= Src[ Offset +1 ] << 16;
f1 = Src[ Offset+srcstride +0 ];
f1 |= Src[ Offset+srcstride +1 ] << 16;
f0 = (ri*f0)>>16;
f1 = (ri*f1) & 0x0fff0000;
f0 |= f1;
f0 = ( rj*f0 + Rounder ) >> 24;
Dst[i] = (byte)f0;
}
Dst += dststride;
}
}
//----------------------------
static void Predict_1pt_8x8_C(const NEW_GMC_DATA * const This, byte *uDst, const byte *uSrc,
byte *vDst, const byte *vSrc, int dststride, int srcstride, int x, int y, int rounding){
const int W = This->sW >> 1;
const int H = This->sH >> 1;
const int rho = 3-This->accuracy;
const int Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;
int uo = This->Uco + (x<<7);
int vo = This->Vco + (y<<7);
const dword rri = MTab[uo & 15];
const dword rrj = MTab[vo & 15];
int i, j;
int Offset;
if ((dword)vo<=(dword)H) Offset = (vo>>4)*srcstride;
else if (vo>H) Offset = ( H>>4)*srcstride;
else Offset =-8*srcstride;
if ((dword)uo<=(dword)W) Offset += (uo>>4);
else if (uo>W) Offset += (W>>4);
else Offset -= 8;
uDst += 8;
vDst += 8;
for(j=8; j>0; --j, Offset+=srcstride-8)
{
for(i=-8; i<0; ++i, Offset++)
{
dword f0, f1;
f0 = uSrc[ Offset + 0 ];
f0 |= uSrc[ Offset + 1 ] << 16;
f1 = uSrc[ Offset + srcstride + 0 ];
f1 |= uSrc[ Offset + srcstride + 1 ] << 16;
f0 = (rri*f0)>>16;
f1 = (rri*f1) & 0x0fff0000;
f0 |= f1;
f0 = ( rrj*f0 + Rounder ) >> 24;
uDst[i] = (byte)f0;
f0 = vSrc[ Offset + 0 ];
f0 |= vSrc[ Offset + 1 ] << 16;
f1 = vSrc[ Offset + srcstride + 0 ];
f1 |= vSrc[ Offset + srcstride + 1 ] << 16;
f0 = (rri*f0)>>16;
f1 = (rri*f1) & 0x0fff0000;
f0 |= f1;
f0 = ( rrj*f0 + Rounder ) >> 24;
vDst[i] = (byte)f0;
}
uDst += dststride;
vDst += dststride;
}
}
//----------------------------
static void get_average_mv_1pt_C(const NEW_GMC_DATA *const Dsp, VECTOR * const mv, int x, int y, int qpel){
mv->x = RSHIFT(Dsp->Uo<<qpel, 3);
mv->y = RSHIFT(Dsp->Vo<<qpel, 3);
}
//----------------------------
void generate_GMCparameters(int nb_pts, int accuracy, const WARPPOINTS *pts, int width, int height, NEW_GMC_DATA *gmc){
gmc->sW = width << 4;
gmc->sH = height << 4;
gmc->accuracy = accuracy;
gmc->num_wp = nb_pts;
//reduce the number of points, if possible
if(nb_pts<3 || (pts->duv[2].x==-pts->duv[1].y && pts->duv[2].y==pts->duv[1].x)){
if(nb_pts<2 || (pts->duv[1].x==0 && pts->duv[1].y==0)){
if(nb_pts<1 || (pts->duv[0].x==0 && pts->duv[0].y==0)){
nb_pts = 0;
}else
nb_pts = 1;
}else
nb_pts = 2;
}else
nb_pts = 3;
//now, nb_pts stores the actual number of points required for interpolation
if(nb_pts<=1){
if(nb_pts==1){
/* store as 4b fixed point */
gmc->Uo = pts->duv[0].x << accuracy;
gmc->Vo = pts->duv[0].y << accuracy;
gmc->Uco = ((pts->duv[0].x>>1) | (pts->duv[0].x&1)) << accuracy; /* DIV2RND() */
gmc->Vco = ((pts->duv[0].y>>1) | (pts->duv[0].y&1)) << accuracy; /* DIV2RND() */
}else{ /* zero points?! */
gmc->Uo = gmc->Vo = 0;
gmc->Uco = gmc->Vco = 0;
}
gmc->predict_16x16 = Predict_1pt_16x16_C;
gmc->predict_8x8 = Predict_1pt_8x8_C;
gmc->get_average_mv = get_average_mv_1pt_C;
}else{ /* 2 or 3 points */
const int rho = 3 - accuracy; /* = {3,2,1,0} for Acc={0,1,2,3} */
int Alpha = log2bin(width-1);
int Ws = 1 << Alpha;
gmc->dU[0] = 16*Ws + RDIV( 8*Ws*pts->duv[1].x, width ); /* dU/dx */
gmc->dV[0] = RDIV( 8*Ws*pts->duv[1].y, width ); /* dV/dx */
/* disabled, because possibly buggy? */
#if 0
if (nb_pts==2) {
gmc->dU[1] = -gmc->dV[0]; /* -Sin */
gmc->dV[1] = gmc->dU[0] ; /* Cos */
}
else
#endif
{
const int Beta = log2bin(height-1);
const int Hs = 1<<Beta;
gmc->dU[1] = RDIV( 8*Hs*pts->duv[2].x, height ); /* dU/dy */
gmc->dV[1] = 16*Hs + RDIV( 8*Hs*pts->duv[2].y, height ); /* dV/dy */
if (Beta>Alpha) {
gmc->dU[0] <<= (Beta-Alpha);
gmc->dV[0] <<= (Beta-Alpha);
Alpha = Beta;
Ws = Hs;
}
else {
gmc->dU[1] <<= Alpha - Beta;
gmc->dV[1] <<= Alpha - Beta;
}
}
/* upscale to 16b fixed-point */
gmc->dU[0] <<= (16-Alpha - rho);
gmc->dU[1] <<= (16-Alpha - rho);
gmc->dV[0] <<= (16-Alpha - rho);
gmc->dV[1] <<= (16-Alpha - rho);
gmc->Uo = ( pts->duv[0].x <<(16+ accuracy)) + (1<<15);
gmc->Vo = ( pts->duv[0].y <<(16+ accuracy)) + (1<<15);
gmc->Uco = ((pts->duv[0].x-1)<<(17+ accuracy)) + (1<<17);
gmc->Vco = ((pts->duv[0].y-1)<<(17+ accuracy)) + (1<<17);
gmc->Uco = (gmc->Uco + gmc->dU[0] + gmc->dU[1])>>2;
gmc->Vco = (gmc->Vco + gmc->dV[0] + gmc->dV[1])>>2;
gmc->predict_16x16 = Predict_16x16_C;
gmc->predict_8x8 = Predict_8x8_C;
gmc->get_average_mv = get_average_mv_C;
}
}
//----------------------------
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -