?? pca.m
字號:
function [PCcoeff, PCvec] = pca(data, N)%PCA Principal Components Analysis%% Description% PCCOEFF = PCA(DATA) computes the eigenvalues of the covariance% matrix of the dataset DATA and returns them as PCCOEFF. These% coefficients give the variance of DATA along the corresponding% principal components.%% PCCOEFF = PCA(DATA, N) returns the largest N eigenvalues.%% [PCCOEFF, PCVEC] = PCA(DATA) returns the principal components as well% as the coefficients. This is considerably more computationally% demanding than just computing the eigenvalues.%% See also% EIGDEC, GTMINIT, PPCA%% Copyright (c) Ian T Nabney (1996-2001)if nargin == 1 N = size(data, 2);endif nargout == 1 evals_only = logical(1);else evals_only = logical(0);endif N ~= round(N) | N < 1 | N > size(data, 2) error('Number of PCs must be integer, >0, < dim');end% Find the sorted eigenvalues of the data covariance matrixif evals_only PCcoeff = eigdec(cov(data), N);else [PCcoeff, PCvec] = eigdec(cov(data), N);end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -