?? mlphdotv.m
字號:
function hdv = mlphdotv(net, x, t, v)%MLPHDOTV Evaluate the product of the data Hessian with a vector. %% Description%% HDV = MLPHDOTV(NET, X, T, V) takes an MLP network data structure NET,% together with the matrix X of input vectors, the matrix T of target% vectors and an arbitrary row vector V whose length equals the number% of parameters in the network, and returns the product of the data-% dependent contribution to the Hessian matrix with V. The% implementation is based on the R-propagation algorithm of% Pearlmutter.%% See also% MLP, MLPHESS, HESSCHEK%% Copyright (c) Ian T Nabney (1996-2001)% Check arguments for consistencyerrstring = consist(net, 'mlp', x, t);if ~isempty(errstring); error(errstring);endndata = size(x, 1);[y, z] = mlpfwd(net, x); % Standard forward propagation.zprime = (1 - z.*z); % Hidden unit first derivatives.zpprime = -2.0*z.*zprime; % Hidden unit second derivatives.vnet = mlpunpak(net, v); % Unpack the v vector.% Do the R-forward propagation.ra1 = x*vnet.w1 + ones(ndata, 1)*vnet.b1;rz = zprime.*ra1;ra2 = rz*net.w2 + z*vnet.w2 + ones(ndata, 1)*vnet.b2;switch net.outfn case 'linear' % Linear outputs ry = ra2; case 'logistic' % Logistic outputs ry = y.*(1 - y).*ra2; case 'softmax' % Softmax outputs nout = size(t, 2); ry = y.*ra2 - y.*(sum(y.*ra2, 2)*ones(1, nout)); otherwise error(['Unknown activation function ', net.outfn]); end% Evaluate delta for the output units.delout = y - t;% Do the standard backpropagation.delhid = zprime.*(delout*net.w2');% Now do the R-backpropagation.rdelhid = zpprime.*ra1.*(delout*net.w2') + zprime.*(delout*vnet.w2') + ... zprime.*(ry*net.w2');% Finally, evaluate the components of hdv and then merge into long vector.hw1 = x'*rdelhid;hb1 = sum(rdelhid, 1);hw2 = z'*ry + rz'*delout;hb2 = sum(ry, 1);hdv = [hw1(:)', hb1, hw2(:)', hb2];
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -