亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? rbftrain.m

?? 高斯過程是一種非參數化的學習方法
?? M
字號:
function [net, options] = rbftrain(net, options, x, t)%RBFTRAIN Two stage training of RBF network.%%	Description%	NET = RBFTRAIN(NET, OPTIONS, X, T) uses a  two stage training%	algorithm to set the weights in the RBF model structure NET. Each row%	of X corresponds to one input vector and each row of T contains the%	corresponding target vector. The centres are determined by fitting a%	Gaussian mixture model with circular covariances using the EM%	algorithm through a call to RBFSETBF.  (The mixture model is%	initialised using a small number of iterations of the K-means%	algorithm.) If the activation functions are Gaussians, then the basis%	function widths are then set to the maximum inter-centre squared%	distance.%%	For linear outputs,  the hidden to output weights that give rise to%	the least squares solution can then be determined using the pseudo-%	inverse. For neuroscale outputs, the hidden to output weights are%	determined using the iterative shadow targets algorithm.  Although%	this two stage procedure may not give solutions with as low an error%	as using general  purpose non-linear optimisers, it is much faster.%%	The options vector may have two rows: if this is the case, then the%	second row is passed to RBFSETBF, which allows the user to specify a%	different number iterations for RBF and GMM training. The optional%	parameters to RBFTRAIN have the following interpretations.%%	OPTIONS(1) is set to 1 to display error values during EM training.%%	OPTIONS(2) is a measure of the precision required for the value of%	the weights W at the solution.%%	OPTIONS(3) is a measure of the precision required of the objective%	function at the solution.  Both this and the previous condition must%	be satisfied for termination.%%	OPTIONS(5) is set to 1 if the basis functions parameters should%	remain unchanged; default 0.%%	OPTIONS(6) is set to 1 if the output layer weights should be should%	set using PCA. This is only relevant for Neuroscale outputs; default%	0.%%	OPTIONS(14) is the maximum number of iterations for the shadow%	targets algorithm;  default 100.%%	See also%	RBF, RBFERR, RBFFWD, RBFGRAD, RBFPAK, RBFUNPAK, RBFSETBF%%	Copyright (c) Ian T Nabney (1996-2001)% Check arguments for consistencyswitch net.outfncase 'linear'  errstring = consist(net, 'rbf', x, t);case 'neuroscale'  errstring = consist(net, 'rbf', x);otherwise error(['Unknown output function ', net.outfn]);endif ~isempty(errstring)  error(errstring);end% Allow options to have two rows: if this is the case, then the second row% is passed to rbfsetbfif size(options, 1) == 2  setbfoptions = options(2, :);  options = options(1, :);else  setbfoptions = options;endif(~options(14))  options(14) = 100;end% Do we need to test for termination?test = (options(2) | options(3));% Set up the basis function parameters to model the input data density% unless options(5) is set.if ~(logical(options(5)))  net = rbfsetbf(net, setbfoptions, x);end% Compute the design (or activations) matrix[y, act] = rbffwd(net, x);ndata = size(x, 1);if strcmp(net.outfn, 'neuroscale') & options(6)  % Initialise output layer weights by projecting data with PCA  mu = mean(x);  [pcvals, pcvecs] = pca(x, net.nout);  xproj = (x - ones(ndata, 1)*mu)*pcvecs;  % Now use projected data as targets to compute output layer weights  temp = pinv([act ones(ndata, 1)]) * xproj;  net.w2 = temp(1:net.nhidden, :);  net.b2 = temp(net.nhidden+1, :);  % Propagate again to compute revised outputs  [y, act] = rbffwd(net, x);endswitch net.outfncase 'linear'  % Sum of squares error function in regression model  % Solve for the weights and biases using pseudo-inverse from activations  Phi = [act ones(ndata, 1)];  if ~isfield(net, 'alpha')    % Solve for the weights and biases using left matrix divide    temp = pinv(Phi)*t;  elseif size(net.alpha == [1 1])    % Use normal form equation    hessian = Phi'*Phi + net.alpha*eye(net.nin+1);    temp = pinv(hessian)*(Phi'*t);    else    error('Only scalar alpha allowed');  end  net.w2 = temp(1:net.nhidden, :);  net.b2 = temp(net.nhidden+1, :);case 'neuroscale'  % Use the shadow targets training algorithm  if nargin < 4    % If optional input distances not passed in, then use    % Euclidean distance    x_dist = sqrt(dist2(x, x));  else    x_dist = t;  end  Phi = [act, ones(ndata, 1)];  % Compute the pseudo-inverse of Phi  PhiDag = pinv(Phi);  % Compute y_dist, distances between image points  y_dist = sqrt(dist2(y, y));  % Save old weights so that we can check the termination criterion  wold = netpak(net);  % Compute initial error (stress) value  errold = 0.5*(sum(sum((x_dist - y_dist).^2)));  % Initial value for eta  eta = 0.1;  k_up = 1.2;  k_down = 0.1;  success = 1;  % Force initial gradient calculation  for j = 1:options(14)    if success      % Compute the negative error gradient with respect to network outputs      D = (x_dist - y_dist)./(y_dist+(y_dist==0));      temp = y';      neg_gradient = -2.*sum(kron(D, ones(1, net.nout)) .* ...	(repmat(y, 1, ndata) - repmat((temp(:))', ndata, 1)), 1);      neg_gradient = (reshape(neg_gradient, net.nout, ndata))';    end    % Compute the shadow targets    t = y + eta*neg_gradient;    % Solve for the weights and biases    temp = PhiDag * t;    net.w2 = temp(1:net.nhidden, :);    net.b2 = temp(net.nhidden+1, :);       % Do housekeeping and test for convergence    ynew = rbffwd(net, x);    y_distnew = sqrt(dist2(ynew, ynew));    err = 0.5.*(sum(sum((x_dist-y_distnew).^2)));    if err > errold      success = 0;      % Restore previous weights      net = netunpak(net, wold);      err = errold;      eta = eta * k_down;    else      success = 1;      eta = eta * k_up;      errold = err;      y = ynew;      y_dist = y_distnew;      if test & j > 1	w = netpak(net);	if (max(abs(w - wold)) < options(2) & abs(err-errold) < options(3))	  options(8) = err;	  return;	end      end      wold = netpak(net);    end    if options(1)      fprintf(1, 'Cycle %4d Error %11.6f\n', j, err)    end    if nargout >= 3      errlog(j) = err;    end  end  options(8) = errold;  if (options(1) >= 0)    disp('Warning: Maximum number of iterations has been exceeded');  endotherwise   error(['Unknown output function ', net.outfn]);end

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产99久久久国产精品免费看 | 波多野洁衣一区| 日本一道高清亚洲日美韩| 一区二区三区不卡视频在线观看 | 精品日韩在线一区| 欧美一区二区在线视频| 欧美在线不卡一区| 色香蕉成人二区免费| 99riav久久精品riav| 91网上在线视频| 色综合久久88色综合天天6| 成人av在线影院| 91性感美女视频| 91高清视频在线| 欧美日韩亚洲综合| 欧美精品在线一区二区| 91精品综合久久久久久| 日韩欧美国产一区二区三区| 欧美videos中文字幕| 日韩欧美的一区| 捆绑调教美女网站视频一区| 欧美日韩国产首页| 日韩欧美综合在线| xnxx国产精品| 国产精品久久久爽爽爽麻豆色哟哟| 欧美激情一区不卡| 樱桃国产成人精品视频| 日韩精品欧美精品| 韩国精品久久久| 91丨porny丨在线| 欧美精品在线观看一区二区| 欧美大胆人体bbbb| 国产精品成人午夜| 婷婷六月综合网| 国产一区二区不卡老阿姨| 成a人片亚洲日本久久| 欧美性极品少妇| 欧美不卡一二三| 1000部国产精品成人观看| 亚洲成人黄色小说| 国产盗摄一区二区三区| 在线观看视频一区| 精品国产区一区| 综合久久国产九一剧情麻豆| 免费成人美女在线观看.| 成人中文字幕在线| 欧美精品在线观看一区二区| 欧美激情一区二区三区在线| 国产精一区二区三区| 色老汉av一区二区三区| 日韩一卡二卡三卡国产欧美| 综合久久国产九一剧情麻豆| 捆绑紧缚一区二区三区视频| 91原创在线视频| 久久久久久亚洲综合影院红桃| 国产精品美女一区二区在线观看| 亚洲小说春色综合另类电影| 国产成人8x视频一区二区| 欧美日韩美少妇 | 国产精品亚洲专一区二区三区| 在线亚洲欧美专区二区| 日本一区二区三区久久久久久久久不| 亚洲一二三区在线观看| 成人免费观看av| 欧美成人国产一区二区| 亚洲国产aⅴ成人精品无吗| 国产成人精品一区二| 日韩欧美不卡在线观看视频| 亚洲在线观看免费| 97精品久久久久中文字幕 | 国产精品 日产精品 欧美精品| 欧美探花视频资源| 一区二区三区免费观看| 99国产精品国产精品久久| 久久嫩草精品久久久久| 久久精品国产第一区二区三区 | 国产精品久久久久久久久快鸭| 日韩和欧美的一区| 欧美日韩成人在线| 亚洲成人你懂的| 99在线精品一区二区三区| 久久色视频免费观看| 美女一区二区在线观看| 日韩色在线观看| 蜜桃精品视频在线| 日韩欧美高清dvd碟片| 蜜臀久久久99精品久久久久久| 777a∨成人精品桃花网| 视频一区二区国产| 日韩一区二区在线播放| 老司机免费视频一区二区| 精品99999| 国产成人高清视频| 亚洲欧洲国产日本综合| 色哟哟在线观看一区二区三区| 亚洲精品综合在线| 欧美精品丝袜中出| 麻豆成人久久精品二区三区小说| 日韩欧美国产三级| 国产99一区视频免费| 亚洲欧洲精品一区二区三区| 91黄色免费看| 日韩国产欧美在线视频| 久久综合久久鬼色中文字| 国产91在线|亚洲| 尤物av一区二区| 91精品国产91久久久久久最新毛片| 老汉av免费一区二区三区| 久久久精品免费观看| 91老师国产黑色丝袜在线| 亚洲成人福利片| 久久久www免费人成精品| 91丨porny丨在线| 国产成人免费网站| 亚洲综合在线视频| 精品国产免费久久| 色狠狠一区二区三区香蕉| 三级亚洲高清视频| 国产精品欧美久久久久一区二区| 色视频成人在线观看免| 奇米影视7777精品一区二区| 亚洲国产精华液网站w| 欧美网站一区二区| 成人午夜私人影院| 亚洲小说欧美激情另类| 国产欧美一区二区精品婷婷 | jlzzjlzz欧美大全| 捆绑调教美女网站视频一区| 国产精品国产三级国产三级人妇| 欧美一区二区在线看| www.久久久久久久久| 久久精品国产999大香线蕉| 亚洲女人小视频在线观看| 欧美不卡在线视频| 欧美精品亚洲二区| 色猫猫国产区一区二在线视频| 国产专区综合网| 丝袜国产日韩另类美女| 亚洲欧美经典视频| 国产日韩在线不卡| 日韩精品在线一区| 欧美日韩成人综合天天影院| 92精品国产成人观看免费| 久久国产麻豆精品| 日韩精品亚洲专区| 五月婷婷综合在线| 亚洲一区二区偷拍精品| 综合久久给合久久狠狠狠97色| 国产亚洲一本大道中文在线| 这里只有精品99re| 91.com在线观看| 欧美体内she精视频| 欧美在线观看18| 在线亚洲高清视频| 日本韩国欧美一区二区三区| 成人黄色一级视频| 成人v精品蜜桃久久一区| 国产精品538一区二区在线| 精品一区二区三区免费毛片爱| 日韩电影在线观看一区| 欧美日韩国产小视频在线观看| 精品国产乱码久久久久久老虎| 日韩欧美一区在线| 日韩欧美一区电影| 日韩欧美国产成人一区二区| 日韩欧美中文字幕精品| 日韩免费福利电影在线观看| 精品国产污污免费网站入口| 欧美成人伊人久久综合网| 精品欧美乱码久久久久久1区2区| 91麻豆精品国产91久久久久久久久 | 91香蕉国产在线观看软件| 91社区在线播放| 欧美三级日韩三级国产三级| 欧美日韩精品专区| 日韩一区二区电影网| 国产亚洲视频系列| 国产精品久久久久影院亚瑟 | 99久久99久久精品免费观看 | 一区二区三区免费在线观看| 亚洲一区二区不卡免费| 天堂蜜桃91精品| 国产一区二区看久久| proumb性欧美在线观看| 欧美亚男人的天堂| 精品国产免费人成电影在线观看四季 | 成人h动漫精品| 欧美色窝79yyyycom| 欧美成人福利视频| 18成人在线观看| 日本三级亚洲精品| a美女胸又www黄视频久久| 欧美日韩1区2区| 欧美激情一区不卡| 日韩va亚洲va欧美va久久| 高清在线不卡av| 91精品国产色综合久久ai换脸| 国产片一区二区三区| 亚洲高清不卡在线观看| 国产v日产∨综合v精品视频|