亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? demev3.m

?? 高斯過(guò)程是一種非參數(shù)化的學(xué)習(xí)方法
?? M
字號(hào):
%DEMEV3	Demonstrate Bayesian regression for the RBF.%%	Description%	The problem consists an input variable X which sampled from a%	Gaussian distribution, and a target variable T generated by computing%	SIN(2*PI*X) and adding Gaussian noise. An RBF network with linear%	outputs is trained by minimizing a sum-of-squares error function with%	isotropic Gaussian regularizer, using the scaled conjugate gradient%	optimizer. The hyperparameters ALPHA and BETA are re-estimated using%	the function EVIDENCE. A graph  is plotted of the original function,%	the training data, the trained network function, and the error bars.%%	See also%	DEMEV1, EVIDENCE, RBF, SCG, NETEVFWD%%	Copyright (c) Ian T Nabney (1996-2001)clc;disp('This demonstration illustrates the application of Bayesian')disp('re-estimation to determine the hyperparameters in a simple regression')disp('problem using an RBF netowk. It is based on a the fact that the')disp('posterior distribution for the output weights of an RBF is Gaussian')disp('and uses the evidence maximization framework of MacKay.')disp(' ')disp('First, we generate a synthetic data set consisting of a single input')disp('variable x sampled from a Gaussian distribution, and a target variable')disp('t obtained by evaluating sin(2*pi*x) and adding Gaussian noise.')disp(' ')disp('Press any key to see a plot of the data together with the sine function.')pause;% Generate the matrix of inputs x and targets t.ndata = 16;			% Number of data points.noise = 0.1;			% Standard deviation of noise distribution.randn('state', 0);rand('state', 0);x = 0.25 + 0.07*randn(ndata, 1);t = sin(2*pi*x) + noise*randn(size(x));% Plot the data and the original sine function.h = figure;nplot = 200;plotvals = linspace(0, 1, nplot)';plot(x, t, 'ok')xlabel('Input')ylabel('Target')hold onaxis([0 1 -1.5 1.5])fplot('sin(2*pi*x)', [0 1], '-g')legend('data', 'function');disp(' ')disp('Press any key to continue')pause; clc;disp('Next we create a two-layer MLP network having 3 hidden units and one')disp('linear output. The model assumes Gaussian target noise governed by an')disp('inverse variance hyperparmeter beta, and uses a simple Gaussian prior')disp('distribution governed by an inverse variance hyperparameter alpha.')disp(' ');disp('The network weights and the hyperparameters are initialised and then')disp('the output layer weights are optimized with the scaled conjugate gradient')disp('algorithm using the SCG function, with the hyperparameters kept')disp('fixed. After a maximum of 50 iterations, the hyperparameters are')disp('re-estimated using the EVIDENCE function. The process of optimizing')disp('the weights with fixed hyperparameters and then re-estimating the')disp('hyperparameters is repeated for a total of 3 cycles.')disp(' ')disp('Press any key to train the network and determine the hyperparameters.')pause;% Set up network parameters.nin = 1;		% Number of inputs.nhidden = 3;		% Number of hidden units.nout = 1;		% Number of outputs.alpha = 0.01;		% Initial prior hyperparameter. beta_init = 50.0;	% Initial noise hyperparameter.% Create and initialize network weight vector.net = rbf(nin, nhidden, nout, 'tps', 'linear', alpha, beta_init);[net.mask, prior] = rbfprior('tps', nin, nhidden, nout, alpha, alpha);net = netinit(net, prior);options = foptions;options(14) = 5;  % At most 5 EM iterations for basis functionsoptions(1) = -1;  % Turn off all messagesnet = rbfsetbf(net, options, x);  % Initialise the basis functions% Now train the networknouter = 5;ninner = 2;options = foptions;options(1) = 1;options(2) = 1.0e-5;		% Absolute precision for weights.options(3) = 1.0e-5;		% Precision for objective function.options(14) = 50;		% Number of training cycles in inner loop. % Train using scaled conjugate gradients, re-estimating alpha and beta.for k = 1:nouter  net = netopt(net, options, x, t, 'scg');  [net, gamma] = evidence(net, x, t, ninner);  fprintf(1, '\nRe-estimation cycle %d:\n', k);  fprintf(1, '  alpha =  %8.5f\n', net.alpha);  fprintf(1, '  beta  =  %8.5f\n', net.beta);  fprintf(1, '  gamma =  %8.5f\n\n', gamma);  disp(' ')  disp('Press any key to continue.')  pause;endfprintf(1, 'true beta: %f\n', 1/(noise*noise));disp(' ')disp('Network training and hyperparameter re-estimation are now complete.') disp('Compare the final value for the hyperparameter beta with the true') disp('value.')disp(' ')disp('Notice that the final error value is close to the number of data')disp(['points (', num2str(ndata),') divided by two.'])disp(' ')disp('Press any key to continue.')pause; clc;disp('We can now plot the function represented by the trained network. This')disp('corresponds to the mean of the predictive distribution. We can also')disp('plot ''error bars'' representing one standard deviation of the')disp('predictive distribution around the mean.')disp(' ')disp('Press any key to add the network function and error bars to the plot.')pause;% Evaluate error bars.[y, sig2] = netevfwd(netpak(net), net, x, t, plotvals);sig = sqrt(sig2);% Plot the data, the original function, and the trained network function.[y, z] = rbffwd(net, plotvals);figure(h); hold on;plot(plotvals, y, '-r')xlabel('Input')ylabel('Target')plot(plotvals, y + sig, '-b');plot(plotvals, y - sig, '-b');legend('data', 'function', 'network', 'error bars');disp(' ')disp('Notice how the confidence interval spanned by the ''error bars'' is')disp('smaller in the region of input space where the data density is high,')disp('and becomes larger in regions away from the data.')disp(' ')disp('Press any key to end.')pause; clc; close(h); 

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久国产精品无码网站| 亚洲视频一区二区在线| 日本欧美一区二区| 欧美日韩中文字幕精品| 污片在线观看一区二区| 日韩天堂在线观看| 韩日av一区二区| 久久精品免视看| 国产成人精品综合在线观看 | 日韩成人一区二区三区在线观看| 欧美性大战xxxxx久久久| 亚洲成人免费看| 精品欧美一区二区三区精品久久| 老司机免费视频一区二区| 日韩欧美色电影| 高清在线观看日韩| 亚洲精品国产无套在线观| 欧美日韩国产中文| 久久精品国产99久久6| 亚洲国产成人自拍| 欧美日韩国产中文| 国产精品白丝av| 一区二区三区四区蜜桃| 日韩限制级电影在线观看| 国产精品亚洲专一区二区三区| 国产精品美女久久久久久2018| 色婷婷综合久久久中文字幕| 免费在线观看一区二区三区| 国产女人18水真多18精品一级做| 在线观看视频一区二区| 国内成人自拍视频| 一级中文字幕一区二区| 欧美成人艳星乳罩| 色av一区二区| 国产一区二区三区四区在线观看| 亚洲女与黑人做爰| 欧美精品一区二区蜜臀亚洲| 91久久久免费一区二区| 国产精品一线二线三线精华| 亚洲综合久久久久| 中文字幕不卡一区| 日韩欧美自拍偷拍| 日本乱人伦aⅴ精品| 国产美女视频91| 午夜精品免费在线| 亚洲欧美一区二区三区国产精品 | 日韩一区欧美一区| 欧美大片免费久久精品三p| 色婷婷久久综合| 国产精品1区2区3区在线观看| 婷婷一区二区三区| 亚洲三级免费观看| 欧美激情一区在线观看| 日韩午夜激情电影| 欧美午夜理伦三级在线观看| www.久久精品| 国产精品一区二区不卡| 久久国产欧美日韩精品| 日韩精品色哟哟| 亚洲制服丝袜在线| 亚洲天堂精品视频| 欧美国产一区二区| 国产欧美日韩久久| 久久久久久久久免费| 欧美成人精品1314www| 欧美日本视频在线| 欧美私模裸体表演在线观看| 97se狠狠狠综合亚洲狠狠| 国产福利一区二区三区视频在线 | 97精品久久久午夜一区二区三区| 国内外成人在线视频| 毛片av中文字幕一区二区| 偷拍与自拍一区| 午夜免费久久看| 亚洲一区二区三区中文字幕| 夜夜嗨av一区二区三区| 亚洲国产裸拍裸体视频在线观看乱了| 中文字幕一区二区三区在线观看| 欧美经典一区二区| 国产精品久久久久久久午夜片| 国产色91在线| 欧美韩国日本一区| 国产精品国产三级国产专播品爱网| 国产欧美视频一区二区| 中文字幕国产一区| 亚洲欧洲成人精品av97| 椎名由奈av一区二区三区| 亚洲欧美激情一区二区| 亚洲一区在线视频观看| 亚洲成人综合视频| 日本不卡123| 精品制服美女久久| 国产传媒久久文化传媒| 成人综合婷婷国产精品久久| av电影在线观看完整版一区二区| 91美女福利视频| 欧美美女bb生活片| 欧美成人在线直播| 欧美国产日韩亚洲一区| 亚洲激情五月婷婷| 日本成人在线电影网| 国产九九视频一区二区三区| 不卡av在线网| 欧美色中文字幕| 精品免费一区二区三区| 亚洲国产精品传媒在线观看| 亚洲欧美日韩国产手机在线| 午夜精品久久久久影视| 麻豆精品久久精品色综合| 东方aⅴ免费观看久久av| 91美女在线视频| 日韩一区二区三区在线视频| 国产欧美一区二区精品性| 亚洲一区国产视频| 韩国精品主播一区二区在线观看| 99久久综合色| 91精品国产黑色紧身裤美女| 欧美激情艳妇裸体舞| 午夜天堂影视香蕉久久| 国产高清一区日本| 欧美日本不卡视频| 中文字幕不卡在线观看| 日韩在线一区二区| 不卡视频一二三| 制服.丝袜.亚洲.中文.综合| 国产精品久线观看视频| 青青草97国产精品免费观看无弹窗版| 成人蜜臀av电影| 8v天堂国产在线一区二区| 国产精品免费免费| 日本午夜精品一区二区三区电影| 成人av中文字幕| 欧美一级生活片| 有坂深雪av一区二区精品| 国产精品资源站在线| 欧美日韩国产另类一区| 综合亚洲深深色噜噜狠狠网站| 日韩电影在线免费观看| 一本色道久久综合亚洲精品按摩| 久久在线免费观看| 日韩国产精品91| 欧洲国产伦久久久久久久| 日本一区二区视频在线观看| 日韩不卡一区二区| 欧美日韩精品二区第二页| 中文字幕一区二| 国产精品一区二区免费不卡| 日韩欧美亚洲另类制服综合在线| 亚洲国产日产av| 色综合久久天天| 中文字幕av一区二区三区免费看| 久久99精品久久久久久久久久久久| 欧美色图12p| 一区二区三区91| 99精品1区2区| 国产精品福利一区二区| 高清av一区二区| 久久综合色鬼综合色| 老司机午夜精品| 日韩欧美亚洲国产另类 | 日韩一二三四区| 亚洲成人一区二区在线观看| 日本黄色一区二区| 亚洲精品视频在线观看网站| 91网站视频在线观看| 亚洲色图.com| 91成人看片片| 亚洲一区在线播放| 欧美网站一区二区| 亚洲午夜成aⅴ人片| 欧美视频在线一区| 亚洲成人av一区| 欧美精品777| 美腿丝袜亚洲色图| 精品国产乱码久久久久久闺蜜| 精品伊人久久久久7777人| 久久综合久久综合久久综合| 国产精品1区2区3区| 国产日韩欧美麻豆| gogo大胆日本视频一区| 亚洲精品欧美在线| 欧美日韩一区视频| 日本不卡一区二区三区高清视频| 日韩一区二区三区视频在线| 久久国产精品第一页| 久久精品亚洲麻豆av一区二区 | 五月天一区二区| 91精品国产综合久久精品性色| 另类小说欧美激情| 国产日韩欧美a| 91色.com| 日韩国产欧美在线观看| 亚洲精品在线网站| 本田岬高潮一区二区三区| 亚洲美女偷拍久久| 3d成人h动漫网站入口| 国产美女精品在线| 最好看的中文字幕久久| 在线播放日韩导航| 国产成人在线观看|