?? rbfbkp.m
字號:
function g = rbfbkp(net, x, z, n2, deltas)%RBFBKP Backpropagate gradient of error function for RBF network.%% Description% G = RBFBKP(NET, X, Z, N2, DELTAS) takes a network data structure NET% together with a matrix X of input vectors, a matrix Z of hidden unit% activations, a matrix N2 of the squared distances between centres and% inputs, and a matrix DELTAS of the gradient of the error function% with respect to the values of the output units (i.e. the summed% inputs to the output units, before the activation function is% applied). The return value is the gradient G of the error function% with respect to the network weights. Each row of X corresponds to one% input vector.%% This function is provided so that the common backpropagation% algorithm can be used by RBF network models to compute gradients for% the output values (in RBFDERIV) as well as standard error functions.%% See also% RBF, RBFGRAD, RBFDERIV%% Copyright (c) Ian T Nabney (1996-2001)% Evaluate second-layer gradients.gw2 = z'*deltas;gb2 = sum(deltas);% Evaluate hidden unit gradientsdelhid = deltas*net.w2';gc = zeros(net.nhidden, net.nin);ndata = size(x, 1);t1 = ones(ndata, 1);t2 = ones(1, net.nin);% Switch on activation function typeswitch net.actfn case 'gaussian' % Gaussian delhid = (delhid.*z); % A loop seems essential, so do it with the shortest index vector if (net.nin < net.nhidden) for i = 1:net.nin gc(:,i) = (sum(((x(:,i)*ones(1, net.nhidden)) - ... (ones(ndata, 1)*(net.c(:,i)'))).*delhid, 1)./net.wi)'; end else for i = 1:net.nhidden gc(i,:) = sum((x - (t1*(net.c(i,:)))./net.wi(i)).*(delhid(:,i)*t2), 1); end end gwi = sum((n2.*delhid)./(2.*(ones(ndata, 1)*(net.wi.^2))), 1); case 'tps' % Thin plate spline activation function delhid = delhid.*(1+log(n2+(n2==0))); for i = 1:net.nhidden gc(i,:) = sum(2.*((t1*(net.c(i,:)) - x)).*(delhid(:,i)*t2), 1); end % widths are not adjustable in this model gwi = [];case 'r4logr' % r^4 log r activation function delhid = delhid.*(n2.*(1+2.*log(n2+(n2==0)))); for i = 1:net.nhidden gc(i,:) = sum(2.*((t1*(net.c(i,:)) - x)).*(delhid(:,i)*t2), 1); end % widths are not adjustable in this model gwi = [];otherwise error('Unknown activation function in rbfgrad')end g = [gc(:)', gwi, gw2(:)', gb2];
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -