亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? demard.m

?? 高斯過(guò)程是一種非參數(shù)化的學(xué)習(xí)方法
?? M
字號(hào):
%DEMARD	Automatic relevance determination using the MLP.%%	Description%	This script demonstrates the technique of automatic relevance%	determination (ARD) using a synthetic problem having three input%	variables: X1 is sampled uniformly from the range (0,1) and has a low%	level of added Gaussian noise, X2 is a copy of X1 with a higher level%	of added noise, and X3 is sampled randomly from a Gaussian%	distribution. The single target variable is determined by%	SIN(2*PI*X1) with additive Gaussian noise. Thus X1 is very relevant%	for determining the target value, X2 is of some relevance, while X3%	is irrelevant. The prior over weights is given by the ARD Gaussian%	prior with a separate hyper-parameter for the group of weights%	associated with each input. A multi-layer perceptron is trained on%	this data, with re-estimation of the hyper-parameters using EVIDENCE.%	The final values for the hyper-parameters reflect the relative%	importance of the three inputs.%%	See also%	DEMMLP1, DEMEV1, MLP, EVIDENCE%%	Copyright (c) Ian T Nabney (1996-2001)clc;disp('This demonstration illustrates the technique of automatic relevance')disp('determination (ARD) using a multi-layer perceptron.')disp(' ');disp('First, we set up a synthetic data set involving three input variables:')disp('x1 is sampled uniformly from the range (0,1) and has a low level of')disp('added Gaussian noise, x2 is a copy of x1 with a higher level of added')disp('noise, and x3 is sampled randomly from a Gaussian distribution. The')disp('single target variable is given by t = sin(2*pi*x1) with additive')disp('Gaussian noise. Thus x1 is very relevant for determining the target')disp('value, x2 is of some relevance, while x3 should in principle be')disp('irrelevant.')disp(' ');disp('Press any key to see a plot of t against x1.')pause;% Generate the data set.randn('state', 0); rand('state', 0); ndata = 100;noise = 0.05;x1 = rand(ndata, 1) + 0.002*randn(ndata, 1);x2 = x1 + 0.02*randn(ndata, 1);x3 = 0.5 + 0.2*randn(ndata, 1);x = [x1, x2, x3];t = sin(2*pi*x1) + noise*randn(ndata, 1);% Plot the data and the original function.h = figure;plotvals = linspace(0, 1, 200)';plot(x1, t, 'ob')hold onaxis([0 1 -1.5 1.5])[fx, fy] = fplot('sin(2*pi*x)', [0 1]);plot(fx, fy, '-g', 'LineWidth', 2);legend('data', 'function');disp(' ');disp('Press any key to continue')pause; clc;disp('The prior over weights is given by the ARD Gaussian prior with a')disp('separate hyper-parameter for the group of weights associated with each')disp('input. This prior is set up using the utility MLPPRIOR. The network is')disp('trained by error minimization using scaled conjugate gradient function')disp('SCG. There are two cycles of training, and at the end of each cycle')disp('the hyper-parameters are re-estimated using EVIDENCE.')disp(' ');disp('Press any key to create and train the network.')disp(' ');pause;% Set up network parameters.nin = 3;			% Number of inputs.nhidden = 2;			% Number of hidden units.nout = 1;			% Number of outputs.aw1 = 0.01*ones(1, nin);	% First-layer ARD hyperparameters.ab1 = 0.01;			% Hyperparameter for hidden unit biases.aw2 = 0.01;			% Hyperparameter for second-layer weights.ab2 = 0.01;			% Hyperparameter for output unit biases.beta = 50.0;			% Coefficient of data error.% Create and initialize network.prior = mlpprior(nin, nhidden, nout, aw1, ab1, aw2, ab2);net = mlp(nin, nhidden, nout, 'linear', prior, beta);% Set up vector of options for the optimiser.nouter = 2;			% Number of outer loopsninner = 10;		        % Number of inner loopsoptions = zeros(1,18);		% Default options vector.options(1) = 1;			% This provides display of error values.options(2) = 1.0e-7;	% This ensures that convergence must occuroptions(3) = 1.0e-7;options(14) = 300;		% Number of training cycles in inner loop. % Train using scaled conjugate gradients, re-estimating alpha and beta.for k = 1:nouter  net = netopt(net, options, x, t, 'scg');  [net, gamma] = evidence(net, x, t, ninner);  fprintf(1, '\n\nRe-estimation cycle %d:\n', k);  disp('The first three alphas are the hyperparameters for the corresponding');  disp('input to hidden unit weights.  The remainder are the hyperparameters');  disp('for the hidden unit biases, second layer weights and output unit')  disp('biases, respectively.')  fprintf(1, '  alpha =  %8.5f\n', net.alpha);  fprintf(1, '  beta  =  %8.5f\n', net.beta);  fprintf(1, '  gamma =  %8.5f\n\n', gamma);  disp(' ')  disp('Press any key to continue.')  pauseend% Plot the function corresponding to the trained network.figure(h); hold on;[y, z] = mlpfwd(net, plotvals*ones(1,3));plot(plotvals, y, '-r', 'LineWidth', 2)legend('data', 'function', 'network');disp('Press any key to continue.');pause; clc;disp('We can now read off the hyperparameter values corresponding to the')disp('three inputs x1, x2 and x3:')disp(' ');fprintf(1, '    alpha1: %8.5f\n', net.alpha(1));fprintf(1, '    alpha2: %8.5f\n', net.alpha(2));fprintf(1, '    alpha3: %8.5f\n', net.alpha(3));disp(' ');disp('Since each alpha corresponds to an inverse variance, we see that the')disp('posterior variance for weights associated with input x1 is large, that')disp('of x2 has an intermediate value and the variance of weights associated')disp('with x3 is small.')disp(' ')disp('Press any key to continue.')disp(' ')pausedisp('This is confirmed by looking at the corresponding weight values:')disp(' ');fprintf(1, '    %8.5f    %8.5f\n', net.w1');disp(' ');disp('where the three rows correspond to weights asssociated with x1, x2 and')disp('x3 respectively. We see that the network is giving greatest emphasis')disp('to x1 and least emphasis to x3, with intermediate emphasis on')disp('x2. Since the target t is statistically independent of x3 we might')disp('expect the weights associated with this input would go to')disp('zero. However, for any finite data set there may be some chance')disp('correlation between x3 and t, and so the corresponding alpha remains')disp('finite.')disp(' ');disp('Press any key to end.')pause; clc; close(h); clear all

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产欧美精品一区二区三区四区| 亚洲小少妇裸体bbw| 日日骚欧美日韩| 欧美日韩国产一级二级| 亚洲高清中文字幕| 亚洲国产一区二区在线播放| 亚洲免费看黄网站| 欧美理论片在线| 国产美女精品在线| 综合欧美一区二区三区| 337p亚洲精品色噜噜狠狠| 国产精品一区二区在线播放| 亚洲一二三区在线观看| 欧美一区二区成人6969| 成人av网站在线观看免费| 一区二区三区小说| 国产欧美精品区一区二区三区| 久久精品欧美一区二区三区不卡| 欧美亚洲另类激情小说| 国产一区二区在线影院| 国产黄色精品网站| 美腿丝袜亚洲色图| 国产精品久久久久久久久免费樱桃| 91精品国产综合久久久久久漫画| 日韩一区二区三区三四区视频在线观看| caoporen国产精品视频| 韩国理伦片一区二区三区在线播放| 国产精品久久久久精k8 | 精品免费国产二区三区| aaa国产一区| 欧美日本在线视频| 国产午夜精品久久久久久久 | 日本福利一区二区| 国产精品18久久久| 色婷婷av一区二区三区软件| 国产91露脸合集magnet | 中文在线资源观看网站视频免费不卡| 正在播放亚洲一区| 国产日韩高清在线| 婷婷成人综合网| 日韩激情中文字幕| 不卡区在线中文字幕| 91精品蜜臀在线一区尤物| 中文在线一区二区| 琪琪一区二区三区| 精品一区在线看| 韩国三级中文字幕hd久久精品| av中文字幕在线不卡| 欧美xxxx老人做受| 亚洲图片欧美一区| 91在线丨porny丨国产| wwwwww.欧美系列| 日韩小视频在线观看专区| 国产精品久线在线观看| 久久激五月天综合精品| 国产在线视视频有精品| 欧美视频三区在线播放| 中文字幕一区二区三区四区不卡| 亚洲天堂成人网| 国产精品18久久久久久久久久久久| 欧美日韩中文字幕一区| 日韩视频中午一区| 视频一区中文字幕国产| 日本道精品一区二区三区| 国产精品久久久久婷婷| 国产福利精品导航| 久久久久久亚洲综合影院红桃| 国产女人aaa级久久久级| 麻豆91免费观看| 欧美一级精品在线| 日产欧产美韩系列久久99| 国产乱子伦视频一区二区三区 | 日韩一区二区在线观看视频播放| 一区二区三区欧美视频| 色噜噜狠狠成人中文综合| 亚洲日本va午夜在线影院| 97久久超碰国产精品| 亚洲欧美在线aaa| av在线播放一区二区三区| 中文字幕一区三区| 91日韩精品一区| 日韩欧美国产高清| 亚洲男人的天堂一区二区| 色综合久久99| 一区二区三区免费| 欧美日韩一区二区三区免费看| 亚洲一区二三区| 91精品国产乱码| 国产一区欧美日韩| 亚洲国产高清aⅴ视频| av在线免费不卡| 亚洲高清三级视频| 日韩欧美国产成人一区二区| 国产做a爰片久久毛片| 中文字幕久久午夜不卡| 91搞黄在线观看| 日韩精品一区第一页| 亚洲精品一区二区在线观看| 午夜久久久久久久久| 日韩欧美中文字幕公布| 国产成人av电影免费在线观看| 中文字幕一区二区日韩精品绯色| 欧洲视频一区二区| 中文字幕制服丝袜成人av| 色婷婷一区二区| 久久精品国产精品亚洲综合| 中文字幕中文字幕一区| 91精品婷婷国产综合久久性色| 国内精品国产成人国产三级粉色| 中文字幕一区二区三区av| 日韩一区二区电影在线| www.亚洲免费av| 免费高清成人在线| 亚洲欧美日韩国产另类专区| 欧美成人国产一区二区| 91香蕉视频污在线| 狠狠v欧美v日韩v亚洲ⅴ| 一区二区三区中文在线观看| 亚洲精品在线网站| 欧美精品少妇一区二区三区| 国产白丝网站精品污在线入口 | 日韩丝袜情趣美女图片| 9久草视频在线视频精品| 日韩国产精品大片| 亚洲欧美另类综合偷拍| 久久久久久9999| 欧美一区二区视频在线观看2020 | 激情综合一区二区三区| 一区二区三国产精华液| 国产精品色一区二区三区| 99视频精品全部免费在线| 蜜臀va亚洲va欧美va天堂| 亚洲综合久久久久| 成人欧美一区二区三区小说| 久久网站热最新地址| 欧美一区二区三区免费观看视频| 91在线观看免费视频| 国产成人亚洲综合a∨婷婷| 久久国产麻豆精品| 石原莉奈一区二区三区在线观看| 亚洲欧美日韩国产综合在线| 国产精品区一区二区三区| 久久亚区不卡日本| 精品久久久久久无| 欧美精品第一页| 欧美日韩国产成人在线91| 在线精品亚洲一区二区不卡| 91影院在线免费观看| 99久久精品国产导航| 99视频在线精品| 95精品视频在线| 色综合久久久久综合| 一本大道av伊人久久综合| 99久久久国产精品| 色婷婷综合久久久中文一区二区 | 中文字幕一区不卡| 国产精品美女一区二区| 国产精品国模大尺度视频| 亚洲色图在线播放| 亚洲女同一区二区| 亚洲国产综合色| 日韩av中文在线观看| 美女一区二区三区在线观看| 激情综合色丁香一区二区| 精品一区二区三区在线播放视频| 狠狠狠色丁香婷婷综合激情 | 中文字幕av一区 二区| 亚洲国产精品高清| 亚洲精品乱码久久久久久| 久久综合久久综合久久| 国产欧美综合在线观看第十页| 欧美国产丝袜视频| 一个色在线综合| 蜜臀久久99精品久久久久宅男| 国产精品主播直播| 99久久免费国产| 日韩天堂在线观看| 日本一区二区三区久久久久久久久不| 国产精品卡一卡二| 肉肉av福利一精品导航| 国产一区二区不卡在线| 91麻豆.com| 欧美不卡一区二区三区| 1024成人网| 久久成人久久鬼色| 色综合天天综合色综合av| 国产精品自在欧美一区| 欧洲生活片亚洲生活在线观看| 日韩一级完整毛片| 中文字幕中文字幕在线一区| 日本最新不卡在线| 91视视频在线直接观看在线看网页在线看 | 青青草国产成人av片免费| 国产成人综合网| 欧美日韩精品专区| 日本一二三不卡| 久久国产视频网| 欧美在线你懂得| 国产精品久久久久久久第一福利| 日本人妖一区二区|