亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? demev2.m

?? 高斯過程是一種非參數化的學習方法
?? M
字號:
%DEMEV2	Demonstrate Bayesian classification for the MLP.%%	Description%	A synthetic two class two-dimensional dataset X is sampled  from a%	mixture of four Gaussians.  Each class is associated with two of the%	Gaussians so that the optimal decision boundary is non-linear. A 2-%	layer network with logistic outputs is trained by minimizing the%	cross-entropy error function with isotroipc Gaussian regularizer (one%	hyperparameter for each of the four standard weight groups), using%	the scaled conjugate gradient optimizer. The hyperparameter vectors%	ALPHA and BETA are re-estimated using the function EVIDENCE. A graph%	is plotted of the optimal, regularised, and unregularised decision%	boundaries.  A further plot of the moderated versus unmoderated%	contours is generated.%%	See also%	EVIDENCE, MLP, SCG, DEMARD, DEMMLP2%%	Copyright (c) Ian T Nabney (1996-2001)clc;disp('This program demonstrates the use of the evidence procedure on')disp('a two-class problem.  It also shows the improved generalisation')disp('performance that can be achieved with moderated outputs; that is')disp('predictions where an approximate integration over the true')disp('posterior distribution is carried out.')disp(' ')disp('First we generate a synthetic dataset with two-dimensional input')disp('sampled from a mixture of four Gaussians.  Each class is')disp('associated with two of the Gaussians so that the optimal decision')disp('boundary is non-linear.')disp(' ')disp('Press any key to see a plot of the data.')pause;% Generate the matrix of inputs x and targets t.rand('state', 423);randn('state', 423);ClassSymbol1 = 'r.';ClassSymbol2 = 'y.';PointSize = 12;titleSize = 10;fh1 = figure;set(fh1, 'Name', 'True Data Distribution');whitebg(fh1, 'k');% % Generate the data% n=200;% Set up mixture model: 2d data with four centres% Class 1 is first two centres, class 2 from the other twomix = gmm(2, 4, 'full');mix.priors = [0.25 0.25 0.25 0.25];mix.centres = [0 -0.1; 1.5 0; 1 1; 1 -1];mix.covars(:,:,1) = [0.625 -0.2165; -0.2165 0.875];mix.covars(:,:,2) = [0.25 0; 0 0.25];mix.covars(:,:,3) = [0.2241 -0.1368; -0.1368 0.9759];mix.covars(:,:,4) = [0.2375 0.1516; 0.1516 0.4125];[data, label] = gmmsamp(mix, n);% % Calculate some useful axis limits% x0 = min(data(:,1));x1 = max(data(:,1));y0 = min(data(:,2));y1 = max(data(:,2));dx = x1-x0;dy = y1-y0;expand = 5/100;			% Add on 5 percent each wayx0 = x0 - dx*expand;x1 = x1 + dx*expand;y0 = y0 - dy*expand;y1 = y1 + dy*expand;resolution = 100;step = dx/resolution;xrange = [x0:step:x1];yrange = [y0:step:y1];% 					% Generate the grid% [X Y]=meshgrid([x0:step:x1],[y0:step:y1]);% % Calculate the class conditional densities, the unconditional densities and% the posterior probabilities% px_j = gmmactiv(mix, [X(:) Y(:)]);px = reshape(px_j*(mix.priors)',size(X));post = gmmpost(mix, [X(:) Y(:)]);p1_x = reshape(post(:, 1) + post(:, 2), size(X));p2_x = reshape(post(:, 3) + post(:, 4), size(X));plot(data((label<=2),1),data(label<=2,2),ClassSymbol1, 'MarkerSize', ...PointSize)hold onaxis([x0 x1 y0 y1])plot(data((label>2),1),data(label>2,2),ClassSymbol2, 'MarkerSize', ...    PointSize)% Convert targets to 0-1 encodingtarget=[label<=2];disp(' ')disp('Press any key to continue')pause; clc;disp('Next we create a two-layer MLP network with 6 hidden units and')disp('one logistic output.  We use a separate inverse variance')disp('hyperparameter for each group of weights (inputs, input bias,')disp('outputs, output bias) and the weights are optimised with the')disp('scaled conjugate gradient algorithm.  After each 100 iterations')disp('the hyperparameters are re-estimated twice.  There are eight')disp('cycles of the whole algorithm.')disp(' ')disp('Press any key to train the network and determine the hyperparameters.')pause;% Set up network parameters.nin = 2;		% Number of inputs.nhidden = 6;		% Number of hidden units.nout = 1;		% Number of outputs.alpha = 0.01;		% Initial prior hyperparameter.aw1 = 0.01;ab1 = 0.01;aw2 = 0.01;ab2 = 0.01;% Create and initialize network weight vector.prior = mlpprior(nin, nhidden, nout, aw1, ab1, aw2, ab2);net = mlp(nin, nhidden, nout, 'logistic', prior);% Set up vector of options for the optimiser.nouter = 8;			% Number of outer loops.ninner = 2;			% Number of innter loops.options = foptions;		% Default options vector.options(1) = 1;			% This provides display of error values.options(2) = 1.0e-5;		% Absolute precision for weights.options(3) = 1.0e-5;		% Precision for objective function.options(14) = 100;		% Number of training cycles in inner loop. % Train using scaled conjugate gradients, re-estimating alpha and beta.for k = 1:nouter  net = netopt(net, options, data, target, 'scg');  [net, gamma] = evidence(net, data, target, ninner);  fprintf(1, '\nRe-estimation cycle %d:\n', k);  disp(['  alpha = ', num2str(net.alpha')]);  fprintf(1, '  gamma =  %8.5f\n\n', gamma);  disp(' ')  disp('Press any key to continue.')  pause;enddisp(' ')disp('Network training and hyperparameter re-estimation are now complete.')disp('Notice that the final error value is close to the number of data')disp(['points (', num2str(n), ') divided by two.'])disp('Also, the hyperparameter values differ, which suggests that a single')disp('hyperparameter would not be so effective.')disp(' ')disp('First we train an MLP without Bayesian regularisation on the')disp('same dataset using 400 iterations of scaled conjugate gradient')disp(' ')disp('Press any key to train the network by maximum likelihood.')pause;% Train standard networknet2 = mlp(nin, nhidden, nout, 'logistic');options(14) = 400;net2 = netopt(net2, options, data, target, 'scg');y2g = mlpfwd(net2, [X(:), Y(:)]);y2g = reshape(y2g(:, 1), size(X));disp(' ')disp('We can now plot the function represented by the trained networks.')disp('We show the decision boundaries (output = 0.5) and the optimal')disp('decision boundary given by applying Bayes'' theorem to the true')disp('data model.')disp(' ')disp('Press any key to add the boundaries to the plot.')pause;% Evaluate predictions.[yg, ymodg] = mlpevfwd(net, data, target, [X(:) Y(:)]);yg = reshape(yg(:,1),size(X));ymodg = reshape(ymodg(:,1),size(X));% Bayesian decision boundary[cB, hB] = contour(xrange,yrange,p1_x,[0.5 0.5],'b-');[cNb, hNb] = contour(xrange,yrange,yg,[0.5 0.5],'r-');[cN, hN] = contour(xrange,yrange,y2g,[0.5 0.5],'g-');set(hB, 'LineWidth', 2);set(hNb, 'LineWidth', 2);set(hN, 'LineWidth', 2);Chandles = [hB(1) hNb(1) hN(1)];legend(Chandles, 'Bayes', ...  'Reg. Network', 'Network', 3);disp(' ')disp('Note how the regularised network predictions are closer to the')disp('optimal decision boundary, while the unregularised network is')disp('overtrained.')disp(' ')disp('We will now compare moderated and unmoderated outputs for the');disp('regularised network by showing the contour plot of the posterior')disp('probability estimates.')disp(' ')disp('The first plot shows the regularised (moderated) predictions')disp('and the second shows the standard predictions from the same network.')disp('These agree at the level 0.5.')disp('Press any key to continue')pauselevels = 0:0.1:1;fh4 = figure;set(fh4, 'Name', 'Moderated outputs');hold onplot(data((label<=2),1),data(label<=2,2),'r.', 'MarkerSize', PointSize)plot(data((label>2),1),data(label>2,2),'y.', 'MarkerSize', PointSize)[cNby, hNby] = contour(xrange, yrange, ymodg, levels, 'k-');set(hNby, 'LineWidth', 1);fh5 = figure;set(fh5, 'Name', 'Unmoderated outputs');hold onplot(data((label<=2),1),data(label<=2,2),'r.', 'MarkerSize', PointSize)plot(data((label>2),1),data(label>2,2),'y.', 'MarkerSize', PointSize)[cNbm, hNbm] = contour(xrange, yrange, yg, levels, 'k-');set(hNbm, 'LineWidth', 1);disp(' ')disp('Note how the moderated contours are more widely spaced.  This shows')disp('that there is a larger region where the outputs are close to 0.5')disp('and a smaller region where the outputs are close to 0 or 1.')disp(' ')disp('Press any key to exit')pauseclose(fh1);close(fh4);close(fh5);

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产揄拍国内精品对白| 亚洲va韩国va欧美va精品| 久久99国产精品成人| 日韩美女主播在线视频一区二区三区| 亚洲国产裸拍裸体视频在线观看乱了 | 不卡av在线网| 欧美国产精品劲爆| 97se亚洲国产综合自在线观| 一区二区三区日本| 日韩一区二区三区视频在线| 国产经典欧美精品| 亚洲毛片av在线| 欧美电影在线免费观看| 久久国产尿小便嘘嘘| 国产日产欧美一区二区三区| 91麻豆自制传媒国产之光| 午夜欧美2019年伦理| 精品电影一区二区三区| 成人黄色免费短视频| 一区二区免费看| 日韩欧美国产三级电影视频| 成人网男人的天堂| 亚洲国产精品久久艾草纯爱| 26uuu国产电影一区二区| 99久久伊人精品| 美女脱光内衣内裤视频久久网站 | 欧美大片一区二区三区| 国产乱人伦精品一区二区在线观看 | 怡红院av一区二区三区| 91精品国产综合久久蜜臀 | 成人av电影观看| 亚洲电影在线免费观看| 久久精品亚洲精品国产欧美kt∨| 91麻豆国产精品久久| 免播放器亚洲一区| 亚洲免费在线播放| 欧美mv日韩mv国产网站app| av电影在线观看一区| 麻豆精品在线观看| 一区二区三区四区不卡在线| 精品精品国产高清a毛片牛牛| 99视频精品在线| 国产综合色视频| 亚洲成人动漫一区| 亚洲欧洲日韩女同| 久久婷婷国产综合国色天香 | 国产91色综合久久免费分享| 亚洲国产精品一区二区久久 | 国产欧美精品在线观看| 欧美久久久久久久久| 91在线国产观看| 国产在线精品一区二区| 日本亚洲天堂网| 亚洲国产日韩精品| 亚洲女同一区二区| 亚洲国产精品成人综合| 久久综合色之久久综合| 欧美一区二区三区爱爱| 欧美日韩一区二区三区在线 | 丝袜a∨在线一区二区三区不卡| 国产精品久久777777| 国产午夜精品一区二区三区视频| 777午夜精品免费视频| 色婷婷综合中文久久一本| 成人一区在线观看| 国产成人免费视频网站| 国产麻豆午夜三级精品| 国模套图日韩精品一区二区| 六月婷婷色综合| 久久不见久久见免费视频1| 天堂影院一区二区| 日韩精品电影在线观看| 日本三级亚洲精品| 日韩av中文字幕一区二区三区 | 欧美电影精品一区二区| 欧美一区二区播放| 日韩一区二区三区四区| 日韩欧美一区二区在线视频| 欧美大片国产精品| 亚洲精品一区二区三区精华液| 91.xcao| 日韩视频国产视频| 精品免费一区二区三区| 精品国产91洋老外米糕| 精品国产乱码久久| 国产视频一区在线播放| 国产欧美日韩激情| 国产精品美女久久久久aⅴ国产馆| 国产精品沙发午睡系列990531| 国产精品久久久久久久久久久免费看| 国产精品另类一区| 亚洲综合清纯丝袜自拍| 婷婷一区二区三区| 美女在线视频一区| 国产99久久久国产精品免费看| 丰满少妇在线播放bd日韩电影| 成av人片一区二区| 欧美日韩一级视频| 久久一日本道色综合| 成人欧美一区二区三区视频网页| 亚洲精品成a人| 免费高清不卡av| 国v精品久久久网| 色综合久久88色综合天天免费| 欧美顶级少妇做爰| 欧美国产成人精品| 亚洲精品国产一区二区精华液| 亚欧色一区w666天堂| 国产精品一区三区| 91福利国产精品| 精品日韩99亚洲| 亚洲欧美日韩电影| 麻豆成人久久精品二区三区小说| 国产精品123区| 欧美日韩国产小视频| 久久女同互慰一区二区三区| 亚洲欧美韩国综合色| 麻豆久久一区二区| 在线看国产日韩| 国产校园另类小说区| 亚洲成人第一页| 成人18视频日本| 日韩三级精品电影久久久| 亚洲男人的天堂在线aⅴ视频| 麻豆精品久久精品色综合| 北条麻妃国产九九精品视频| 欧美一三区三区四区免费在线看| 欧美国产日产图区| 日本不卡视频一二三区| 成人美女在线观看| 欧美va在线播放| 一个色综合av| 国产98色在线|日韩| 91精品国产欧美日韩| 亚洲免费在线视频一区 二区| 久久国产麻豆精品| 欧美日韩中文另类| 亚洲男人的天堂一区二区| 国产成人综合亚洲网站| 欧美一级高清大全免费观看| 一区二区三区蜜桃网| 成人免费看的视频| 国产色产综合产在线视频| 日韩激情中文字幕| 欧美色图12p| 亚洲制服丝袜在线| 91久久人澡人人添人人爽欧美| 久久蜜桃香蕉精品一区二区三区| 日本女优在线视频一区二区| 欧美综合色免费| 亚洲日本欧美天堂| 成人禁用看黄a在线| 久久女同性恋中文字幕| 久久不见久久见免费视频7| 91精品国产入口在线| 婷婷丁香激情综合| 欧美二区乱c少妇| 丝袜美腿亚洲色图| 9191成人精品久久| 日韩主播视频在线| 91精品国产综合久久久久久久久久| 亚洲少妇30p| 成人网男人的天堂| 中文字幕一区在线观看视频| 成人性视频免费网站| 国产精品伦理在线| 不卡欧美aaaaa| 一区在线观看免费| av一区二区三区黑人| 亚洲精品视频在线| 色婷婷久久综合| 午夜久久久影院| 欧美一区二区三区婷婷月色 | 亚洲一区中文日韩| 欧美性猛片xxxx免费看久爱 | 日产欧产美韩系列久久99| 欧美美女直播网站| 麻豆91在线播放免费| 精品久久久久久亚洲综合网| 国产一区二区在线观看视频| 精品av久久707| 国产成人精品网址| ...中文天堂在线一区| 色老综合老女人久久久| 午夜精品一区在线观看| 日韩精品自拍偷拍| 国产一区二区福利| 亚洲欧洲日韩女同| 欧美老肥妇做.爰bbww| 国产在线精品一区二区不卡了| 国产精品视频免费| 欧洲一区二区三区免费视频| 日本中文字幕一区二区视频| 久久天堂av综合合色蜜桃网| 99re这里都是精品| 五月激情六月综合| 欧美激情在线看| 欧美疯狂性受xxxxx喷水图片| 寂寞少妇一区二区三区| 国产精品久久久久久久久免费樱桃|