?? olgd.m
字號:
function [net, options, errlog, pointlog] = olgd(net, options, x, t)%OLGD On-line gradient descent optimization.%% Description% [NET, OPTIONS, ERRLOG, POINTLOG] = OLGD(NET, OPTIONS, X, T) uses on-% line gradient descent to find a local minimum of the error function% for the network NET computed on the input data X and target values T.% A log of the error values after each cycle is (optionally) returned% in ERRLOG, and a log of the points visited is (optionally) returned% in POINTLOG. Because the gradient is computed on-line (i.e. after% each pattern) this can be quite inefficient in Matlab.%% The error function value at final weight vector is returned in% OPTIONS(8).%% The optional parameters have the following interpretations.%% OPTIONS(1) is set to 1 to display error values; also logs error% values in the return argument ERRLOG, and the points visited in the% return argument POINTSLOG. If OPTIONS(1) is set to 0, then only% warning messages are displayed. If OPTIONS(1) is -1, then nothing is% displayed.%% OPTIONS(2) is the precision required for the value of X at the% solution. If the absolute difference between the values of X between% two successive steps is less than OPTIONS(2), then this condition is% satisfied.%% OPTIONS(3) is the precision required of the objective function at the% solution. If the absolute difference between the error functions% between two successive steps is less than OPTIONS(3), then this% condition is satisfied. Both this and the previous condition must be% satisfied for termination. Note that testing the function value at% each iteration roughly halves the speed of the algorithm.%% OPTIONS(5) determines whether the patterns are sampled randomly with% replacement. If it is 0 (the default), then patterns are sampled in% order.%% OPTIONS(6) determines if the learning rate decays. If it is 1 then% the learning rate decays at a rate of 1/T. If it is 0 (the default)% then the learning rate is constant.%% OPTIONS(9) should be set to 1 to check the user defined gradient% function.%% OPTIONS(10) returns the total number of function evaluations% (including those in any line searches).%% OPTIONS(11) returns the total number of gradient evaluations.%% OPTIONS(14) is the maximum number of iterations (passes through the% complete pattern set); default 100.%% OPTIONS(17) is the momentum; default 0.5.%% OPTIONS(18) is the learning rate; default 0.01.%% See also% GRADDESC%% Copyright (c) Ian T Nabney (1996-2001)% Set up the options.if length(options) < 18 error('Options vector too short')endif (options(14)) niters = options(14);else niters = 100;end% Learning rate: must be positiveif (options(18) > 0) eta = options(18);else eta = 0.01;end% Save initial learning rate for annealinglr = eta;% Momentum term: allow zero momentumif (options(17) >= 0) mu = options(17);else mu = 0.5;endpakstr = [net.type, 'pak'];unpakstr = [net.type, 'unpak'];% Extract initial weights from the networkw = feval(pakstr, net);display = options(1);% Work out if we need to compute f at each iteration.% Needed if display results or if termination% criterion requires it.fcneval = (display | options(3));% Check gradientsif (options(9)) feval('gradchek', w, 'neterr', 'netgrad', net, x, t);enddwold = zeros(1, length(w));fold = 0; % Must be initialised so that termination test can be performedndata = size(x, 1);if fcneval fnew = neterr(w, net, x, t); options(10) = options(10) + 1; fold = fnew;endj = 1;if nargout >= 3 errlog(j, :) = fnew; if nargout == 4 pointlog(j, :) = x; endend% Main optimization loop.while j <= niters wold = w; if options(5) % Randomise order of pattern presentation: with replacement pnum = ceil(rand(ndata, 1).*ndata); else pnum = 1:ndata; end for k = 1:ndata grad = netgrad(w, net, x(pnum(k),:), t(pnum(k),:)); if options(6) % Let learning rate decrease as 1/t lr = eta/((j-1)*ndata + k); end dw = mu*dwold - lr*grad; w = w + dw; dwold = dw; end options(11) = options(11) + 1; % Increment gradient evaluation count if fcneval fold = fnew; fnew = neterr(w, net, x, t); options(10) = options(10) + 1; end if display fprintf(1, 'Iteration %5d Error %11.8f\n', j, fnew); end j = j + 1; if nargout >= 3 errlog(j) = fnew; if nargout == 4 pointlog(j, :) = w; end end if (max(abs(w - wold)) < options(2) & abs(fnew - fold) < options(3)) % Termination criteria are met options(8) = fnew; net = feval(unpakstr, net, w); return; endendif fcneval options(8) = fnew;else % Return error on entire dataset options(8) = neterr(w, net, x, t); options(10) = options(10) + 1;endif (options(1) >= 0) disp('Warning: Maximum number of iterations has been exceeded in olgd');endnet = feval(unpakstr, net, w);
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -