?? mlpfwd.m
字號(hào):
function [y, z, a] = mlpfwd(net, x)%MLPFWD Forward propagation through 2-layer network.%% Description% Y = MLPFWD(NET, X) takes a network data structure NET together with a% matrix X of input vectors, and forward propagates the inputs through% the network to generate a matrix Y of output vectors. Each row of X% corresponds to one input vector and each row of Y corresponds to one% output vector.%% [Y, Z] = MLPFWD(NET, X) also generates a matrix Z of the hidden unit% activations where each row corresponds to one pattern.%% [Y, Z, A] = MLPFWD(NET, X) also returns a matrix A giving the summed% inputs to each output unit, where each row corresponds to one% pattern.%% See also% MLP, MLPPAK, MLPUNPAK, MLPERR, MLPBKP, MLPGRAD%% Copyright (c) Ian T Nabney (1996-2001)% Check arguments for consistencyerrstring = consist(net, 'mlp', x);if ~isempty(errstring); error(errstring);endndata = size(x, 1);z = tanh(x*net.w1 + ones(ndata, 1)*net.b1);a = z*net.w2 + ones(ndata, 1)*net.b2;switch net.outfn case 'linear' % Linear outputs y = a; case 'logistic' % Logistic outputs % Prevent overflow and underflow: use same bounds as mlperr % Ensure that log(1-y) is computable: need exp(a) > eps maxcut = -log(eps); % Ensure that log(y) is computable mincut = -log(1/realmin - 1); y = 1./(1 + exp(-a)); case 'softmax' % Softmax outputs % Prevent overflow and underflow: use same bounds as glmerr % Ensure that sum(exp(a), 2) does not overflow maxcut = log(realmax) - log(net.nout); % Ensure that exp(a) > 0 mincut = log(realmin); a = min(a, maxcut); a = max(a, mincut); temp = exp(a); y = temp./(sum(temp, 2)*ones(1, net.nout)); otherwise error(['Unknown activation function ', net.outfn]); end
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -