?? gmmunpak.m
字號:
function mix = gmmunpak(mix, p)%GMMUNPAK Separates a vector of Gaussian mixture model parameters into its components.%% Description% MIX = GMMUNPAK(MIX, P) takes a GMM data structure MIX and a single% row vector of parameters P and returns a mixture data structure% identical to the input MIX, except that the mixing coefficients% PRIORS, centres CENTRES and covariances COVARS (and, for PPCA, the% lambdas and U (PCA sub-spaces)) are all set to the corresponding% elements of P.%% See also% GMM, GMMPAK%% Copyright (c) Ian T Nabney (1996-2001)errstring = consist(mix, 'gmm');if ~errstring error(errstring);endif mix.nwts ~= length(p) error('Invalid weight vector length')endmark1 = mix.ncentres;mark2 = mark1 + mix.ncentres*mix.nin;mix.priors = reshape(p(1:mark1), 1, mix.ncentres);mix.centres = reshape(p(mark1 + 1:mark2), mix.ncentres, mix.nin);switch mix.covar_type case 'spherical' mark3 = mix.ncentres*(2 + mix.nin); mix.covars = reshape(p(mark2 + 1:mark3), 1, mix.ncentres); case 'diag' mark3 = mix.ncentres*(1 + mix.nin + mix.nin); mix.covars = reshape(p(mark2 + 1:mark3), mix.ncentres, mix.nin); case 'full' mark3 = mix.ncentres*(1 + mix.nin + mix.nin*mix.nin); mix.covars = reshape(p(mark2 + 1:mark3), mix.nin, mix.nin, ... mix.ncentres); case 'ppca' mark3 = mix.ncentres*(2 + mix.nin); mix.covars = reshape(p(mark2 + 1:mark3), 1, mix.ncentres); % Now also extract k and eigenspaces mark4 = mark3 + mix.ncentres*mix.ppca_dim; mix.lambda = reshape(p(mark3 + 1:mark4), mix.ncentres, ... mix.ppca_dim); mix.U = reshape(p(mark4 + 1:end), mix.nin, mix.ppca_dim, ... mix.ncentres); otherwise error(['Unknown covariance type ', mix.covar_type]);end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -