?? gp_classify.m
字號:
% GP_classify: implementation for Gaussian Process for Classification
%
% Parameters:
% para: parameters
% 1. PriorMean: mean of the prior distribution, default: 0
% 2. PriorVariance: variance of the prior distribution, default: 1
% 3. NCycles: maximum convergence cycles, default: 10
% 4. Threshold: decision threshold, default: 0.5
% X_train: training examples
% Y_train: training labels
% X_test: testing examples
% Y_test: testing labels
% num_class: number of classes
% class_set: set of class labels such as [1,-1], the first one is the
% positive label
%
% Require functions:
% ParseParameter, GetModelFilename, gp, gpinit, netopt, gpcovar, gpfwd
function [Y_compute, Y_prob] = GP_classify(para, X_train, Y_train, X_test, Y_test, num_class, class_set)
%global preprocess;
%if (nargin <= 5), num_class = 2; end;
%p = str2num(char(ParseParameter(para, {'-PriorMean'; '-PriorVariance'; '-NCycles'; '-Threshold'}, {'0'; '1'; '100'; '0.5'})));
%PriorMean=para(1);
%PriorVariance=para(2);
%NCycles=para(3);
threshold = para(4);
% Parameter estimation
%if (~isempty(X_train)),
[net, cninv] = ParaEst(para, X_train, Y_train, num_class, class_set);
% if (preprocess.TrainOnly == 1),
% save(strcat(GetModelFilename, '.mat'), 'net', 'cninv');
% end;
%else
% model = load(strcat(GetModelFilename, '.mat'));
% net = model.net;
% cninv = model.cninv;
% clear model;
%end;
% Prediction
[Ypred, sigsq] = gpfwd(net, X_test, cninv);
% Convert the results back
Y_compute = class_set(1) * (Ypred >= threshold) + class_set(2) * (Ypred < threshold);
Y_prob = Ypred;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [net, cninv] = ParaEst(p, X_train, Y_train, num_class, class_set)
%global preprocess;
randn('state', 1);
num_feature = size(X_train, 2);
pr_mean = p(1);
pr_variance = p(2);
ncycles = p(3);
% Set the options
options = foptions;
%options(1) = (preprocess.Verbosity >= 1); % Display training error values
options(14) = ncycles;
% Initialization
target = (Y_train == class_set(1));
net = gp(num_feature, 'ratquad'); % 'sqexp'
prior.pr_mean = pr_mean;
prior.pr_var = pr_variance;
net = gpinit(net, X_train, target, prior);
% Now learn the Gaussian Process to find the hyperparameters.
[net, options] = netopt(net, options, X_train, target, 'scg');
cn = gpcovar(net, X_train);
cninv = inv(cn);
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -