?? conjgrad.m
字號:
function [x, options, flog, pointlog] = conjgrad(f, x, options, gradf, ... varargin)%CONJGRAD Conjugate gradients optimization.%% Description% [X, OPTIONS, FLOG, POINTLOG] = CONJGRAD(F, X, OPTIONS, GRADF) uses a% conjugate gradients algorithm to find the minimum of the function% F(X) whose gradient is given by GRADF(X). Here X is a row vector and% F returns a scalar value. The point at which F has a local minimum% is returned as X. The function value at that point is returned in% OPTIONS(8). A log of the function values after each cycle is% (optionally) returned in FLOG, and a log of the points visited is% (optionally) returned in POINTLOG.%% CONJGRAD(F, X, OPTIONS, GRADF, P1, P2, ...) allows additional% arguments to be passed to F() and GRADF().%% The optional parameters have the following interpretations.%% OPTIONS(1) is set to 1 to display error values; also logs error% values in the return argument ERRLOG, and the points visited in the% return argument POINTSLOG. If OPTIONS(1) is set to 0, then only% warning messages are displayed. If OPTIONS(1) is -1, then nothing is% displayed.%% OPTIONS(2) is a measure of the absolute precision required for the% value of X at the solution. If the absolute difference between the% values of X between two successive steps is less than OPTIONS(2),% then this condition is satisfied.%% OPTIONS(3) is a measure of the precision required of the objective% function at the solution. If the absolute difference between the% objective function values between two successive steps is less than% OPTIONS(3), then this condition is satisfied. Both this and the% previous condition must be satisfied for termination.%% OPTIONS(9) is set to 1 to check the user defined gradient function.%% OPTIONS(10) returns the total number of function evaluations% (including those in any line searches).%% OPTIONS(11) returns the total number of gradient evaluations.%% OPTIONS(14) is the maximum number of iterations; default 100.%% OPTIONS(15) is the precision in parameter space of the line search;% default 1E-4.%% See also% GRADDESC, LINEMIN, MINBRACK, QUASINEW, SCG%% Copyright (c) Ian T Nabney (1996-2001)% Set up the options.if length(options) < 18 error('Options vector too short')endif(options(14)) niters = options(14);else niters = 100;end% Set up options for line searchline_options = foptions;% Need a precise line search for successif options(15) > 0 line_options(2) = options(15);else line_options(2) = 1e-4;enddisplay = options(1);% Next two lines allow conjgrad to work with expression stringsf = fcnchk(f, length(varargin));gradf = fcnchk(gradf, length(varargin));% Check gradientsif (options(9)) feval('gradchek', x, f, gradf, varargin{:});endoptions(10) = 0;options(11) = 0;nparams = length(x);fnew = feval(f, x, varargin{:});options(10) = options(10) + 1;gradnew = feval(gradf, x, varargin{:});options(11) = options(11) + 1;d = -gradnew; % Initial search directionbr_min = 0;br_max = 1.0; % Initial value for maximum distance to search alongtol = sqrt(eps);j = 1;if nargout >= 3 flog(j, :) = fnew; if nargout == 4 pointlog(j, :) = x; endendwhile (j <= niters) xold = x; fold = fnew; gradold = gradnew; gg = gradold*gradold'; if (gg == 0.0) % If the gradient is zero then we are done. options(8) = fnew; return; end % This shouldn't occur, but rest of code depends on d being downhill if (gradnew*d' > 0) d = -d; if options(1) >= 0 warning('search direction uphill in conjgrad'); end end line_sd = d./norm(d); [lmin, line_options] = feval('linemin', f, xold, line_sd, fold, ... line_options, varargin{:}); options(10) = options(10) + line_options(10); options(11) = options(11) + line_options(11); % Set x and fnew to be the actual search point we have found x = xold + lmin * line_sd; fnew = line_options(8); % Check for termination if (max(abs(x - xold)) < options(2) & max(abs(fnew - fold)) < options(3)) options(8) = fnew; return; end gradnew = feval(gradf, x, varargin{:}); options(11) = options(11) + 1; % Use Polak-Ribiere formula to update search direction gamma = ((gradnew - gradold)*(gradnew)')/gg; d = (d .* gamma) - gradnew; if (display > 0) fprintf(1, 'Cycle %4d Function %11.6f\n', j, line_options(8)); end j = j + 1; if nargout >= 3 flog(j, :) = fnew; if nargout == 4 pointlog(j, :) = x; end endend% If we get here, then we haven't terminated in the given number of % iterations.options(8) = fold;if (options(1) >= 0) disp('Warning: Maximum number of iterations has been exceeded in conjgrad');end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -