?? mlphess.m
字號:
function [h, hdata] = mlphess(net, x, t, hdata)%MLPHESS Evaluate the Hessian matrix for a multi-layer perceptron network.%% Description% H = MLPHESS(NET, X, T) takes an MLP network data structure NET, a% matrix X of input values, and a matrix T of target values and returns% the full Hessian matrix H corresponding to the second derivatives of% the negative log posterior distribution, evaluated for the current% weight and bias values as defined by NET.%% [H, HDATA] = MLPHESS(NET, X, T) returns both the Hessian matrix H and% the contribution HDATA arising from the data dependent term in the% Hessian.%% H = MLPHESS(NET, X, T, HDATA) takes a network data structure NET, a% matrix X of input values, and a matrix T of target values, together% with the contribution HDATA arising from the data dependent term in% the Hessian, and returns the full Hessian matrix H corresponding to% the second derivatives of the negative log posterior distribution.% This version saves computation time if HDATA has already been% evaluated for the current weight and bias values.%% See also% MLP, HESSCHEK, MLPHDOTV, EVIDENCE%% Copyright (c) Ian T Nabney (1996-2001)% Check arguments for consistencyerrstring = consist(net, 'mlp', x, t);if ~isempty(errstring); error(errstring);endif nargin == 3 % Data term in Hessian needs to be computed hdata = datahess(net, x, t);end[h, hdata] = hbayes(net, hdata);% Sub-function to compute data part of Hessianfunction hdata = datahess(net, x, t)hdata = zeros(net.nwts, net.nwts);for v = eye(net.nwts); hdata(find(v),:) = mlphdotv(net, x, t, v);endreturn
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -