亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? demgmm4.m

?? 高斯過(guò)程是一種非參數(shù)化的學(xué)習(xí)方法
?? M
字號(hào):
%DEMGMM4 Demonstrate density modelling with a Gaussian mixture model.%%	Description%	 The problem consists of modelling data generated by a mixture of%	three Gaussians in 2 dimensions with a mixture model using full%	covariance matrices.  The priors are 0.3, 0.5 and 0.2; the centres%	are (2, 3.5), (0, 0) and (0,2); the variances are (0.16, 0.64) axis%	aligned, (0.25, 1) rotated by 30 degrees and the identity matrix. The%	first figure contains a scatter plot of the data.%%	A Gaussian mixture model with three components is trained using EM.%	The parameter vector is printed before training and after training.%	The user should press any key to continue at these points.  The%	parameter vector consists of priors (the column), and centres (given%	as (x, y) pairs as the next two columns).  The covariance matrices%	are printed separately.%%	The second figure is a 3 dimensional view of the density function,%	while the third shows the axes of the 1-standard deviation ellipses%	for the three components of the mixture model.%%	See also%	GMM, GMMINIT, GMMEM, GMMPROB, GMMUNPAK%%	Copyright (c) Ian T Nabney (1996-2001)% Generate the datandata = 500;% Fix the seeds for reproducible resultsrandn('state', 42);rand('state', 42);data = randn(ndata, 2);prior = [0.3 0.5 0.2];% Mixture model swaps clusters 1 and 3datap = [0.2 0.5 0.3];datac = [0 2; 0 0; 2 3.5];datacov = repmat(eye(2), [1 1 3]);data1 = data(1:prior(1)*ndata,:);data2 = data(prior(1)*ndata+1:(prior(2)+prior(1))*ndata, :);data3 = data((prior(1)+prior(2))*ndata +1:ndata, :);% First cluster has axis aligned variance and centre (2, 3.5)data1(:, 1) = data1(:, 1)*0.4 + 2.0;data1(:, 2) = data1(:, 2)*0.8 + 3.5;datacov(:, :, 3) = [0.4*0.4 0; 0 0.8*0.8];% Second cluster has variance axes rotated by 30 degrees and centre (0, 0)rotn = [cos(pi/6) -sin(pi/6); sin(pi/6) cos(pi/6)];data2(:,1) = data2(:, 1)*0.5;data2 = data2*rotn;datacov(:, :, 2) = rotn' * [0.25 0; 0 1] * rotn;% Third cluster is at (0,2)data3 = data3 + repmat([0 2], prior(3)*ndata, 1);% Put the dataset together againdata = [data1; data2; data3];clcdisp('This demonstration illustrates the use of a Gaussian mixture model')disp('with full covariance matrices to approximate the unconditional ')disp('probability density of data in a two-dimensional space.')disp('We begin by generating the data from a mixture of three Gaussians and')disp('plotting it.')disp(' ')disp('The first cluster has axis aligned variance and centre (0, 2).')disp('The second cluster has variance axes rotated by 30 degrees')disp('and centre (0, 0).  The third cluster has unit variance and centre')disp('(2, 3.5).')disp(' ')disp('Press any key to continue.')pausefh1 = figure;plot(data(:, 1), data(:, 2), 'o')set(gca, 'Box', 'on')% Set up mixture modelncentres = 3;input_dim = 2;mix = gmm(input_dim, ncentres, 'full');% Initialise the model parameters from the dataoptions = foptions;options(14) = 5;	% Just use 5 iterations of k-means in initialisationmix = gmminit(mix, data, options);% Print out modelclcdisp('The mixture model has three components and full covariance')disp('matrices.  The model parameters after initialisation using the')disp('k-means algorithm are as follows')disp('    Priors        Centres')disp([mix.priors' mix.centres])disp('Covariance matrices are')disp(mix.covars)disp('Press any key to continue.')pause% Set up vector of options for EM traineroptions = zeros(1, 18);options(1)  = 1;		% Prints out error values.options(14) = 50;		% Number of iterations.disp('We now train the model using the EM algorithm for 50 iterations.')disp(' ')disp('Press any key to continue.')pause[mix, options, errlog] = gmmem(mix, data, options);% Print out modeldisp(' ')disp('The trained model has priors and centres:')disp('    Priors        Centres')disp([mix.priors' mix.centres])disp('The data generator has priors and centres')disp('    Priors        Centres')disp([datap' datac])disp('Model covariance matrices are')disp(mix.covars(:, :, 1))disp(mix.covars(:, :, 2))disp(mix.covars(:, :, 3))disp('Data generator covariance matrices are')disp(datacov(:, :, 1))disp(datacov(:, :, 2))disp(datacov(:, :, 3))disp('Note the close correspondence between these parameters and those')disp('of the distribution used to generate the data.  The match for')disp('covariance matrices is not that close, but would be improved with')disp('more iterations of the training algorithm.')disp(' ')disp('Press any key to continue.')pauseclcdisp('We now plot the density given by the mixture model as a surface plot.')disp(' ')disp('Press any key to continue.')pause% Plot the resultx = -4.0:0.2:5.0;y = -4.0:0.2:5.0;[X, Y] = meshgrid(x,y);X = X(:);Y = Y(:);grid = [X Y];Z = gmmprob(mix, grid);Z = reshape(Z, length(x), length(y));c = mesh(x, y, Z);hold ontitle('Surface plot of probability density')hold offdrawnowclcdisp('The final plot shows the centres and widths, given by one standard')disp('deviation, of the three components of the mixture model.  The axes')disp('of the ellipses of constant density are shown.')disp(' ')disp('Press any key to continue.')pause% Try to calculate a sensible position for the second figure, below the firstfig1_pos = get(fh1, 'Position');fig2_pos = fig1_pos;fig2_pos(2) = fig2_pos(2) - fig1_pos(4) - 30;fh2 = figure('Position', fig2_pos);h3 = plot(data(:, 1), data(:, 2), 'bo');axis equal;hold ontitle('Plot of data and covariances')for i = 1:ncentres  [v,d] = eig(mix.covars(:,:,i));  for j = 1:2    % Ensure that eigenvector has unit length    v(:,j) = v(:,j)/norm(v(:,j));    start=mix.centres(i,:)-sqrt(d(j,j))*(v(:,j)');    endpt=mix.centres(i,:)+sqrt(d(j,j))*(v(:,j)');    linex = [start(1) endpt(1)];    liney = [start(2) endpt(2)];    line(linex, liney, 'Color', 'k', 'LineWidth', 3)  end  % Plot ellipses of one standard deviation  theta = 0:0.02:2*pi;  x = sqrt(d(1,1))*cos(theta);  y = sqrt(d(2,2))*sin(theta);  % Rotate ellipse axes  ellipse = (v*([x; y]))';  % Adjust centre  ellipse = ellipse + ones(length(theta), 1)*mix.centres(i,:);  plot(ellipse(:,1), ellipse(:,2), 'r-');endhold offdisp('Note how the data cluster positions and widths are captured by')disp('the mixture model.')disp(' ')disp('Press any key to end.')pauseclose(fh1);close(fh2);clear all; 

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
一区二区三区在线视频免费观看 | 666欧美在线视频| 蜜桃精品在线观看| 亚洲欧洲综合另类| 久久久久九九视频| 91麻豆精品国产91久久久使用方法| 不卡一区二区中文字幕| 美女一区二区在线观看| 亚洲成人av电影在线| 日韩毛片精品高清免费| 国产亚洲视频系列| 欧美一级免费大片| 欧美日韩一区小说| 99精品视频在线播放观看| 国产一区二区三区在线观看免费视频 | 午夜成人免费视频| 亚洲女人的天堂| 久久久精品日韩欧美| 欧美一级片在线观看| 欧美色图天堂网| 色综合久久综合网欧美综合网| 国产成人日日夜夜| 狠狠色丁香婷婷综合久久片| 日本三级亚洲精品| 日韩精品一级中文字幕精品视频免费观看 | 精彩视频一区二区三区| 热久久久久久久| 日日夜夜精品视频免费| 亚洲第一成年网| 午夜精品久久久久久久| 亚洲动漫第一页| 亚洲第一久久影院| 天天操天天色综合| 五月婷婷激情综合网| 亚洲高清在线视频| 偷拍自拍另类欧美| 天堂va蜜桃一区二区三区漫画版| 污片在线观看一区二区| 国产suv精品一区二区三区| 国产综合久久久久久久久久久久| 久久国产剧场电影| 国产精品亚洲成人| 成人av电影在线网| 91久久精品一区二区三| 色综合色狠狠天天综合色| 在线视频你懂得一区二区三区| 日本韩国精品在线| 欧美视频在线播放| 91精品久久久久久久99蜜桃 | 日韩精品在线看片z| 日韩免费观看高清完整版在线观看| 欧美mv和日韩mv国产网站| 亚洲精品一线二线三线| 欧美激情一区二区| 亚洲黄色免费网站| 日韩—二三区免费观看av| 久久精品国产亚洲5555| 国产成人在线电影| 99久久99久久久精品齐齐| 欧美四级电影在线观看| 日韩一二三区视频| 久久久国产综合精品女国产盗摄| 国产精品天美传媒| 亚洲亚洲精品在线观看| 九一九一国产精品| av中文字幕亚洲| 在线不卡一区二区| 日韩电影免费一区| 国产裸体歌舞团一区二区| 成人毛片在线观看| 欧美日韩中文国产| 久久影院午夜论| 一区二区三区成人| 国内精品在线播放| 色综合久久综合中文综合网| 日韩一区二区影院| 国产精品久久久久久久第一福利 | 国产一区二区三区高清播放| 97久久精品人人做人人爽50路| 69p69国产精品| 国产精品色呦呦| 天天色图综合网| 国产黑丝在线一区二区三区| 在线精品国精品国产尤物884a| 欧美精品一区二区精品网| 亚洲色图一区二区三区| 精品一区在线看| 色嗨嗨av一区二区三区| 欧美成人乱码一区二区三区| 一区二区三区鲁丝不卡| 国产精品一区二区你懂的| 欧美日韩黄视频| 亚洲国产成人一区二区三区| 日本欧美一区二区| 91免费版在线看| 久久精品欧美日韩精品| 日韩国产在线一| 色成年激情久久综合| 久久婷婷久久一区二区三区| 丝袜亚洲另类欧美综合| 91一区二区在线观看| 国产欧美日韩不卡| 六月丁香婷婷久久| 欧美日韩成人在线| 亚洲欧美另类小说视频| 国产精品1区2区| 日韩午夜精品视频| 亚洲电影中文字幕在线观看| 成人v精品蜜桃久久一区| 欧美精品一区二区三区一线天视频 | 99riav久久精品riav| 久久亚洲综合色一区二区三区| 视频一区二区三区中文字幕| 91国产丝袜在线播放| 国产精品电影院| 国产99久久精品| 精品对白一区国产伦| 日韩黄色片在线观看| 欧美日韩高清影院| 亚洲成av人片一区二区梦乃 | 日本一区二区三区四区在线视频| 美国毛片一区二区| 欧美一卡在线观看| 亚洲成人av在线电影| 欧美日韩黄色影视| 性做久久久久久| 欧美日韩小视频| 日韩经典中文字幕一区| 欧美福利视频一区| 日韩高清一级片| 日韩一区二区精品在线观看| 日韩黄色免费网站| 日韩一级免费观看| 麻豆国产精品一区二区三区| 日韩欧美一二区| 久久精品999| 久久综合av免费| 国产成人免费9x9x人网站视频| 久久久www免费人成精品| 国产激情一区二区三区四区| 久久九九影视网| 成人av资源站| 亚洲人成亚洲人成在线观看图片| 成人免费高清视频| 亚洲欧洲色图综合| 91蜜桃在线免费视频| 亚洲一区在线观看视频| 777奇米成人网| 理论电影国产精品| 久久久久久亚洲综合| 99久久夜色精品国产网站| 一区二区三区精品在线观看| 欧美色大人视频| 激情五月婷婷综合| 国产精品女主播av| 在线视频观看一区| 美美哒免费高清在线观看视频一区二区| 欧美videossexotv100| 国内国产精品久久| 综合激情成人伊人| 欧美日韩视频专区在线播放| 久草热8精品视频在线观看| 国产欧美日韩麻豆91| 在线观看亚洲专区| 激情深爱一区二区| 亚洲色图在线播放| 欧美一区二区三区喷汁尤物| 水蜜桃久久夜色精品一区的特点| 国产精品午夜免费| 99riav一区二区三区| 亚洲成人av一区| 久久精品无码一区二区三区| 一道本成人在线| 理论片日本一区| 亚洲欧洲国产日本综合| 欧美另类高清zo欧美| 国产精品一区二区久久精品爱涩| 亚洲免费观看高清完整版在线 | 国产一区日韩二区欧美三区| 亚洲三级久久久| 日韩精品专区在线影院观看| aaa国产一区| 美国精品在线观看| 亚洲乱码国产乱码精品精可以看| 日韩欧美黄色影院| 色老综合老女人久久久| 国产麻豆视频一区二区| 亚洲午夜视频在线观看| 久久欧美一区二区| 5566中文字幕一区二区电影| 成人av网站在线观看免费| 美女视频黄a大片欧美| 亚洲综合999| 国产精品麻豆久久久| 欧美大胆一级视频| 欧美日韩一区二区三区在线看 | 日韩一区二区电影网| 色悠悠亚洲一区二区| 国产剧情一区二区| 日韩专区中文字幕一区二区|