?? mdndist2.m
字號:
function n2 = mdndist2(mixparams, t)%MDNDIST2 Calculates squared distance between centres of Gaussian kernels and data%% Description% N2 = MDNDIST2(MIXPARAMS, T) takes takes the centres of the Gaussian% contained in MIXPARAMS and the target data matrix, T, and computes% the squared Euclidean distance between them. If T has M rows and N% columns, then the CENTRES field in the MIXPARAMS structure should% have M rows and N*MIXPARAMS.NCENTRES columns: the centres in each row% relate to the corresponding row in T. The result has M rows and% MIXPARAMS.NCENTRES columns. The I, Jth entry is the squared distance% from the Ith row of X to the Jth centre in the Ith row of% MIXPARAMS.CENTRES.%% See also% MDNFWD, MDNPROB%% Copyright (c) Ian T Nabney (1996-2001)% David J Evans (1998)% Check arguments for consistencyerrstring = consist(mixparams, 'mdnmixes');if ~isempty(errstring) error(errstring);endncentres = mixparams.ncentres;dim_target = mixparams.dim_target;ntarget = size(t, 1);if ntarget ~= size(mixparams.centres, 1) error('Number of targets does not match number of mixtures')endif size(t, 2) ~= mixparams.dim_target error('Target dimension does not match mixture dimension')end% Build t that suits parameters, that is repeat t for each centret = kron(ones(1, ncentres), t);% Do subtraction and squarediff2 = (t - mixparams.centres).^2;% Reshape and sum each componentdiff2 = reshape(diff2', dim_target, (ntarget*ncentres))';n2 = sum(diff2, 2);% Calculate the sum of distance, and reshape% so that we have a distance for each centre per targetn2 = reshape(n2, ncentres, ntarget)';
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -