亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme.hmm

?? 隱馬爾可夫模型源代碼,希望對大家有所幫助
?? HMM
字號:
		H I D D E N   M A R K O V   M O D E L		 for automatic speech recognition7/30/95  This code implements in C++ a basic left-right hidden Markov modeland corresponding Baum-Welch (ML) training algorithm.  It is meant asan example of the HMM algorithms described by L.Rabiner (1) andothers.  Serious students are directed to the sources listed below fora theoretical description of the algorithm.  KF Lee (2) offers anespecially good tutorial of how to build a speech recognition systemusing hidden Markov models.    Jim and I built this code in order to learn how HMM systems work andwe are now offering it to the net so that others can learn how to useHMMs for speech recognition.  Keep in mind that efficiency was not ourprimary concern when we built this code, but ease of understandingwas.  I expect people to use this code in two different ways.  Peoplewho wish to build an experimental speech recognition system can usethe included "train_hmm" and "test_hmm" programs as black boxcomponents.  The code can also be used in conjunction with writtentutorials on HMMs to understand how they work.			HOW TO COMPILE IT:  We built this code on a Linux system (8meg RAM) and it has beentested under SunOS as well; it should run on any system with Gnu C++and has been tested to be ANSI compliant.  To compile and test the program,	1) extract the code: 		tar -xf hmm.tar	2) compile the programs:		 make all	3) create test sequences: 		generate_seq test.hmm 20 50	4) train using existing model: 		train_hmm test.hmm.seq test.hmm .01	5) train using random parameters: 		train_hmm test.hmm.seq 1234 3 3 .01  After steps 4 and 5 you can compare the file test.hmm.seq.hmm withtest.hmm to confirm that the program is working.				FILE FORMATS:  There are two types of files used by these programs.  The first isthe hmm model file which has the following header:	states: <number of states>	symbols: <number of symbols> A series of ordered blocks follow the header, each of which is twolines long.  Each block corresponds to a state in the model.  Thefirst line of each block gives the probability of the model recurringfollowed by the probability of generating each of the possible outputsymbols when it recurs.  The second line gives the probability of themodel transitioning to the next state followed by the probability ofgenerating each of the possible output symbols when it transitions.The file "test.hmm" gives an example of this format for a three statemodel with three possible output symbols.  The second kind of file is a list of symbol sequences to train ortest the model on.  Symbol sequences are space separated integers (0 12...) terminated by a newline ("\n").  Sequences may either be all ofthe same length, or of different lengths.  The algorithm detects foreach case and processes each slightly differently.  Use the output ofstep 3 above for an example of a sequence file.  A file containingsequences which are all of the same length should train slightlyfaster.			ASR IN A NUTSHELL:  A complete automatic speech recognition system is likely to includeprograms that perform the following tasks:	1) convert audio/wave files to sequences of multi-dimensional	   feature vectors. (eg. DFT, PLP, etc)	2) quantize feature vectors into sequences of symbols (eg. VQ)	3) train a model for each recognition object (ie. word,	   phoneme) from the sequences of symbols. (eg. HMM)	4?) constrain models using grammar information.  Most of the above components are readily available as freeware andbuilding a system from them should not be too difficult.  Making itwork well, however, could be a major undertaking; the devil is in thedetails.				FUTURE:  I would like to eventually put together all of the necessarycomponents for a complete speech recognition test bench.  I envisionsomething that could be combined with a standard speech database suchas the TIMIT data set.  Such a test bench would allow researchers toswap in and evaluate their own methods at various stages in thesystem.  Reported results could be compared against the performance ofa standard non-optimized system which would be publicly available.This way two methods could be compared while controlling for differentdata sets and pre/post processing.  Unfortunately, speech recognition is mostly a side line to Jim'sgraduate work in neural networks and I currently have a job that hastaken me away from the field of speech recognition.  If someone usesthis code in a complete system, we would appreciate hearing about it.   Questions and comments can be directed to:   Richard Myers  (rmyers@isx.com) and Jim Whitson (whitson@ics.uci.edu)Bibliography:-------------1. L. R. Rabiner, B. H. Juang, "Fundamentals of Speech Recognition."   New Jersey : Prentice Hall, c1993.2. L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected   Applications in Speech Recognition," Proc. of the IEEE,   Feb. 1989.3. L. R. Rabiner, B. H. Juang, "An Introduction to Hidden Markov   Models," IEEE ASSP Magazine, Jan. 1986.4. K. F. Lee, "Automatic speech recognition : the development of the   SPHINX system." Boston : Kluwer Academic Publishers, c1989.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久国产日韩欧美精品| 在线亚洲一区观看| 色综合久久久久综合体| 在线综合视频播放| 亚洲女爱视频在线| 国产精品一色哟哟哟| 欧美日韩卡一卡二| 亚洲欧洲精品一区二区精品久久久| 亚洲高清免费观看高清完整版在线观看| 精品一区二区三区免费视频| 精品视频在线视频| 亚洲欧洲精品一区二区精品久久久 | 久久在线观看免费| 香蕉久久夜色精品国产使用方法| 95精品视频在线| 久久综合色鬼综合色| 尤物视频一区二区| zzijzzij亚洲日本少妇熟睡| 国产视频一区在线播放| 久久草av在线| 欧美一区二区三区啪啪| 亚洲6080在线| 欧美日韩一区二区三区不卡| 亚洲欧洲成人av每日更新| 国产白丝网站精品污在线入口| 久久婷婷国产综合精品青草| 久热成人在线视频| 欧美大片在线观看| 国产自产高清不卡| 久久综合久久综合久久综合| 紧缚捆绑精品一区二区| 精品国产91乱码一区二区三区 | 欧美日韩一区视频| 一区二区三区四区五区视频在线观看| www.亚洲国产| 伊人婷婷欧美激情| 欧洲另类一二三四区| 亚洲一区二区三区不卡国产欧美| 欧美三级日韩三级国产三级| 亚洲丶国产丶欧美一区二区三区| 欧美伊人久久久久久午夜久久久久| 亚洲精品高清视频在线观看| 在线观看视频一区| 亚洲国产日韩在线一区模特| 777奇米四色成人影色区| 蜜臀av性久久久久蜜臀aⅴ四虎| 精品免费一区二区三区| 国产成人综合精品三级| 国产精品网曝门| jvid福利写真一区二区三区| 亚洲男人天堂av| 欧美午夜视频网站| 久久9热精品视频| 国产精品美女久久久久av爽李琼| 一本色道a无线码一区v| 婷婷久久综合九色国产成人| 精品卡一卡二卡三卡四在线| 丁香婷婷综合网| 亚洲亚洲人成综合网络| 日韩精品中午字幕| 99亚偷拍自图区亚洲| 水野朝阳av一区二区三区| 精品剧情在线观看| 91蜜桃在线免费视频| 日本欧美一区二区在线观看| 久久蜜臀中文字幕| 色婷婷av一区二区三区之一色屋| 轻轻草成人在线| 中文字幕五月欧美| 日韩三级av在线播放| 成人激情黄色小说| 日韩精品久久久久久| 中文字幕第一区| 91精品国产手机| 成人黄色一级视频| 毛片不卡一区二区| 亚洲另类在线视频| 久久午夜电影网| 91精品国产综合久久久久久久久久| 国产福利电影一区二区三区| 亚洲国产精品欧美一二99| 国产色产综合产在线视频| 欧美精品一卡两卡| 91色视频在线| 国产很黄免费观看久久| 水野朝阳av一区二区三区| 欧美经典一区二区三区| 这里只有精品99re| 欧美性大战久久| 99国产精品久久久久久久久久| 激情综合色播五月| 亚洲成a人在线观看| 亚洲欧洲国产日韩| 国产清纯白嫩初高生在线观看91| 91精品国产综合久久精品app| 91美女片黄在线观看91美女| 国产精品自在欧美一区| 热久久免费视频| 亚洲国产美国国产综合一区二区| 国产精品进线69影院| 国产日韩高清在线| 精品成a人在线观看| 欧美精品少妇一区二区三区 | 粉嫩一区二区三区在线看| 亚洲高清不卡在线| 亚洲综合一区在线| 一区二区三区产品免费精品久久75| 国产精品色在线| 国产日产欧产精品推荐色| 久久综合九色综合久久久精品综合 | 国产精品天美传媒沈樵| 久久天天做天天爱综合色| 精品国产自在久精品国产| 在线播放中文一区| 91精品综合久久久久久| 欧美高清hd18日本| 欧美一区二区三区视频在线| 91麻豆精品国产| 欧美精品一区二区三| 日韩女优电影在线观看| 日韩欧美国产系列| 久久婷婷国产综合精品青草| 欧美高清在线一区二区| 国产精品色婷婷| 成人欧美一区二区三区小说 | 欧美伊人久久大香线蕉综合69| 色www精品视频在线观看| 欧美日韩亚洲综合在线 欧美亚洲特黄一级| 99久久99精品久久久久久 | 日韩午夜在线观看视频| 欧美一级二级在线观看| 久久亚洲二区三区| ●精品国产综合乱码久久久久| 亚洲裸体在线观看| 婷婷中文字幕一区三区| 久久福利资源站| 不卡视频一二三四| 欧美色倩网站大全免费| 91精品视频网| 欧美国产日韩亚洲一区| 亚洲日本一区二区| 日韩av一区二区在线影视| 久久99这里只有精品| 成人动漫中文字幕| 欧美日韩国产美| 欧美高清在线一区二区| 亚洲一二三四区| 国内成+人亚洲+欧美+综合在线| 99在线精品免费| 精品日韩99亚洲| 亚洲蜜臀av乱码久久精品| 日韩成人免费电影| 91在线一区二区| 精品卡一卡二卡三卡四在线| 最新欧美精品一区二区三区| 美腿丝袜一区二区三区| av高清久久久| 欧美大胆一级视频| 亚洲同性gay激情无套| 日韩精品成人一区二区在线| 成人永久免费视频| 日韩写真欧美这视频| 日韩美女精品在线| 国产精品69久久久久水密桃| 91精品在线观看入口| 亚洲欧洲一区二区在线播放| 日本不卡高清视频| 色狠狠一区二区| 欧美极品美女视频| 蜜桃视频一区二区| 欧美日韩中文一区| 亚洲色图自拍偷拍美腿丝袜制服诱惑麻豆| 日本在线播放一区二区三区| 91毛片在线观看| 国产精品美女一区二区| 久久国产剧场电影| 欧美老年两性高潮| 一区二区三区久久久| 不卡在线视频中文字幕| 欧美精品一区二区久久久| 日韩电影在线观看网站| 欧美日韩在线播放一区| 亚洲欧美日本韩国| www.综合网.com| 国产欧美一区二区精品婷婷| 久久精品国产第一区二区三区| 欧美日韩精品三区| 一区二区久久久久久| 91最新地址在线播放| 一区在线观看视频| 97久久精品人人做人人爽| 国产精品视频一二三区 | 欧美日韩精品一区二区天天拍小说 | 日本女人一区二区三区| 日本大香伊一区二区三区| 国产精品家庭影院| av在线这里只有精品| 中文字幕一区二区视频| 99精品久久只有精品| 一区在线中文字幕|