亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? svm_learn.c

?? 支持向量機的c源代碼 比較全面具體
?? C
?? 第 1 頁 / 共 5 頁
字號:
/***********************************************************************/
/*                                                                     */
/*   svm_learn.c                                                       */
/*                                                                     */
/*   Learning module of Support Vector Machine.                        */
/*                                                                     */
/*   Author: Thorsten Joachims                                         */
/*   Date: 02.07.02                                                    */
/*                                                                     */
/*   Copyright (c) 2002  Thorsten Joachims - All rights reserved       */
/*                                                                     */
/*   This software is available for non-commercial use only. It must   */
/*   not be modified and distributed without prior permission of the   */
/*   author. The author is not responsible for implications from the   */
/*   use of this software.                                             */
/*                                                                     */
/***********************************************************************/


# include "svm_common.h"
# include "svm_learn.h"


/* interface to QP-solver */
double *optimize_qp(QP *, double *, long, double *, LEARN_PARM *);

/*---------------------------------------------------------------------------*/

/* Learns an SVM classification model based on the training data in
   docs/label. The resulting model is returned in the structure
   model. */

void svm_learn_classification(DOC **docs, double *class, long int
			      totdoc, long int totwords, 
			      LEARN_PARM *learn_parm, 
			      KERNEL_PARM *kernel_parm, 
			      KERNEL_CACHE *kernel_cache, 
			      MODEL *model,
			      double *alpha)
     /* docs:        Training vectors (x-part) */
     /* class:       Training labels (y-part, zero if test example for
                     transduction) */
     /* totdoc:      Number of examples in docs/label */
     /* totwords:    Number of features (i.e. highest feature index) */
     /* learn_parm:  Learning paramenters */
     /* kernel_parm: Kernel paramenters */
     /* kernel_cache:Initialized Cache of size totdoc, if using a kernel. 
                     NULL if linear.*/
     /* model:       Returns learning result (assumed empty before called) */
     /* alpha:       Start values for the alpha variables or NULL
	             pointer. The new alpha values are returned after 
		     optimization if not NULL. Array must be of size totdoc. */
{
  long *inconsistent,i,*label;
  long inconsistentnum;
  long misclassified,upsupvecnum;
  double loss,model_length,example_length;
  double maxdiff,*lin,*a,*c;
  long runtime_start,runtime_end;
  long iterations;
  long *unlabeled,transduction;
  long heldout;
  long loo_count=0,loo_count_pos=0,loo_count_neg=0,trainpos=0,trainneg=0;
  long loocomputed=0,runtime_start_loo=0,runtime_start_xa=0;
  double heldout_c=0,r_delta_sq=0,r_delta,r_delta_avg;
  long *index,*index2dnum;
  double *weights;
  CFLOAT *aicache;  /* buffer to keep one row of hessian */

  double *xi_fullset; /* buffer for storing xi on full sample in loo */
  double *a_fullset;  /* buffer for storing alpha on full sample in loo */
  TIMING timing_profile;
  SHRINK_STATE shrink_state;

  runtime_start=get_runtime();
  timing_profile.time_kernel=0;
  timing_profile.time_opti=0;
  timing_profile.time_shrink=0;
  timing_profile.time_update=0;
  timing_profile.time_model=0;
  timing_profile.time_check=0;
  timing_profile.time_select=0;
  kernel_cache_statistic=0;

  learn_parm->totwords=totwords;

  /* make sure -n value is reasonable */
  if((learn_parm->svm_newvarsinqp < 2) 
     || (learn_parm->svm_newvarsinqp > learn_parm->svm_maxqpsize)) {
    learn_parm->svm_newvarsinqp=learn_parm->svm_maxqpsize;
  }

  init_shrink_state(&shrink_state,totdoc,(long)MAXSHRINK);

  label = (long *)my_malloc(sizeof(long)*totdoc);
  inconsistent = (long *)my_malloc(sizeof(long)*totdoc);
  unlabeled = (long *)my_malloc(sizeof(long)*totdoc);
  c = (double *)my_malloc(sizeof(double)*totdoc);
  a = (double *)my_malloc(sizeof(double)*totdoc);
  a_fullset = (double *)my_malloc(sizeof(double)*totdoc);
  xi_fullset = (double *)my_malloc(sizeof(double)*totdoc);
  lin = (double *)my_malloc(sizeof(double)*totdoc);
  learn_parm->svm_cost = (double *)my_malloc(sizeof(double)*totdoc);
  model->supvec = (DOC **)my_malloc(sizeof(DOC *)*(totdoc+2));
  model->alpha = (double *)my_malloc(sizeof(double)*(totdoc+2));
  model->index = (long *)my_malloc(sizeof(long)*(totdoc+2));

  model->at_upper_bound=0;
  model->b=0;	       
  model->supvec[0]=0;  /* element 0 reserved and empty for now */
  model->alpha[0]=0;
  model->lin_weights=NULL;
  model->totwords=totwords;
  model->totdoc=totdoc;
  model->kernel_parm=(*kernel_parm);
  model->sv_num=1;
  model->loo_error=-1;
  model->loo_recall=-1;
  model->loo_precision=-1;
  model->xa_error=-1;
  model->xa_recall=-1;
  model->xa_precision=-1;
  inconsistentnum=0;
  transduction=0;

  r_delta=estimate_r_delta(docs,totdoc,kernel_parm);
  r_delta_sq=r_delta*r_delta;

  r_delta_avg=estimate_r_delta_average(docs,totdoc,kernel_parm);
  if(learn_parm->svm_c == 0.0) {  /* default value for C */
    learn_parm->svm_c=1.0/(r_delta_avg*r_delta_avg);
    if(verbosity>=1) 
      printf("Setting default regularization parameter C=%.4f\n",
	     learn_parm->svm_c);
  }

  learn_parm->eps=-1.0;      /* equivalent regression epsilon for
				classification */

  for(i=0;i<totdoc;i++) {    /* various inits */
    docs[i]->docnum=i;
    inconsistent[i]=0;
    a[i]=0;
    lin[i]=0;
    c[i]=0.0;
    unlabeled[i]=0;
    if(class[i] == 0) {
      unlabeled[i]=1;
      label[i]=0;
      transduction=1;
    }
    if(class[i] > 0) {
      learn_parm->svm_cost[i]=learn_parm->svm_c*learn_parm->svm_costratio*
	docs[i]->costfactor;
      label[i]=1;
      trainpos++;
    }
    else if(class[i] < 0) {
      learn_parm->svm_cost[i]=learn_parm->svm_c*docs[i]->costfactor;
      label[i]=-1;
      trainneg++;
    }
    else {
      learn_parm->svm_cost[i]=0;
    }
  }
  if(verbosity>=2) {
    printf("%ld positive, %ld negative, and %ld unlabeled examples.\n",trainpos,trainneg,totdoc-trainpos-trainneg); fflush(stdout);
  }

  /* caching makes no sense for linear kernel */
  if(kernel_parm->kernel_type == LINEAR) {
    kernel_cache = NULL;   
  } 

  /* compute starting state for initial alpha values */
  if(alpha) {
    if(verbosity>=1) {
      printf("Computing starting state..."); fflush(stdout);
    }
    index = (long *)my_malloc(sizeof(long)*totdoc);
    index2dnum = (long *)my_malloc(sizeof(long)*(totdoc+11));
    weights=(double *)my_malloc(sizeof(double)*(totwords+1));
    aicache = (CFLOAT *)my_malloc(sizeof(CFLOAT)*totdoc);
    for(i=0;i<totdoc;i++) {    /* create full index and clip alphas */
      index[i]=1;
      alpha[i]=fabs(alpha[i]);
      if(alpha[i]<0) alpha[i]=0;
      if(alpha[i]>learn_parm->svm_cost[i]) alpha[i]=learn_parm->svm_cost[i];
    }
    if(kernel_parm->kernel_type != LINEAR) {
      for(i=0;i<totdoc;i++)     /* fill kernel cache with unbounded SV */
	if((alpha[i]>0) && (alpha[i]<learn_parm->svm_cost[i]) 
	   && (kernel_cache_space_available(kernel_cache))) 
	  cache_kernel_row(kernel_cache,docs,i,kernel_parm);
      for(i=0;i<totdoc;i++)     /* fill rest of kernel cache with bounded SV */
	if((alpha[i]==learn_parm->svm_cost[i]) 
	   && (kernel_cache_space_available(kernel_cache))) 
	  cache_kernel_row(kernel_cache,docs,i,kernel_parm);
    }
    (void)compute_index(index,totdoc,index2dnum);
    update_linear_component(docs,label,index2dnum,alpha,a,index2dnum,totdoc,
			    totwords,kernel_parm,kernel_cache,lin,aicache,
			    weights);
    (void)calculate_svm_model(docs,label,unlabeled,lin,alpha,a,c,
			      learn_parm,index2dnum,index2dnum,model);
    for(i=0;i<totdoc;i++) {    /* copy initial alphas */
      a[i]=alpha[i];
    }
    free(index);
    free(index2dnum);
    free(weights);
    free(aicache);
    if(verbosity>=1) {
      printf("done.\n");  fflush(stdout);
    }   
  } 

  if(transduction) {
    learn_parm->svm_iter_to_shrink=99999999;
    if(verbosity >= 1)
      printf("\nDeactivating Shrinking due to an incompatibility with the transductive \nlearner in the current version.\n\n");
  }

  if(transduction && learn_parm->compute_loo) {
    learn_parm->compute_loo=0;
    if(verbosity >= 1)
      printf("\nCannot compute leave-one-out estimates for transductive learner.\n\n");
  }    

  if(learn_parm->remove_inconsistent && learn_parm->compute_loo) {
    learn_parm->compute_loo=0;
    printf("\nCannot compute leave-one-out estimates when removing inconsistent examples.\n\n");
  }    

  if(learn_parm->compute_loo && ((trainpos == 1) || (trainneg == 1))) {
    learn_parm->compute_loo=0;
    printf("\nCannot compute leave-one-out with only one example in one class.\n\n");
  }    


  if(verbosity==1) {
    printf("Optimizing"); fflush(stdout);
  }

  /* train the svm */
  iterations=optimize_to_convergence(docs,label,totdoc,totwords,learn_parm,
				     kernel_parm,kernel_cache,&shrink_state,model,
				     inconsistent,unlabeled,a,lin,
				     c,&timing_profile,
				     &maxdiff,(long)-1,
				     (long)1);
  
  if(verbosity>=1) {
    if(verbosity==1) printf("done. (%ld iterations)\n",iterations);

    misclassified=0;
    for(i=0;(i<totdoc);i++) { /* get final statistic */
      if((lin[i]-model->b)*(double)label[i] <= 0.0) 
	misclassified++;
    }

    printf("Optimization finished (%ld misclassified, maxdiff=%.5f).\n",
	   misclassified,maxdiff); 

    runtime_end=get_runtime();
    if(verbosity>=2) {
      printf("Runtime in cpu-seconds: %.2f (%.2f%% for kernel/%.2f%% for optimizer/%.2f%% for final/%.2f%% for update/%.2f%% for model/%.2f%% for check/%.2f%% for select)\n",
        ((float)runtime_end-(float)runtime_start)/100.0,
        (100.0*timing_profile.time_kernel)/(float)(runtime_end-runtime_start),
	(100.0*timing_profile.time_opti)/(float)(runtime_end-runtime_start),
	(100.0*timing_profile.time_shrink)/(float)(runtime_end-runtime_start),
        (100.0*timing_profile.time_update)/(float)(runtime_end-runtime_start),
        (100.0*timing_profile.time_model)/(float)(runtime_end-runtime_start),
        (100.0*timing_profile.time_check)/(float)(runtime_end-runtime_start),
        (100.0*timing_profile.time_select)/(float)(runtime_end-runtime_start));
    }
    else {
      printf("Runtime in cpu-seconds: %.2f\n",
	     (runtime_end-runtime_start)/100.0);
    }

    if(learn_parm->remove_inconsistent) {	  
      inconsistentnum=0;
      for(i=0;i<totdoc;i++) 
	if(inconsistent[i]) 
	  inconsistentnum++;
      printf("Number of SV: %ld (plus %ld inconsistent examples)\n",
	     model->sv_num-1,inconsistentnum);
    }
    else {
      upsupvecnum=0;
      for(i=1;i<model->sv_num;i++) {
	if(fabs(model->alpha[i]) >= 
	   (learn_parm->svm_cost[(model->supvec[i])->docnum]-
	    learn_parm->epsilon_a)) 
	  upsupvecnum++;
      }
      printf("Number of SV: %ld (including %ld at upper bound)\n",
	     model->sv_num-1,upsupvecnum);
    }
    
    if((verbosity>=1) && (!learn_parm->skip_final_opt_check)) {
      loss=0;
      model_length=0; 
      for(i=0;i<totdoc;i++) {
	if((lin[i]-model->b)*(double)label[i] < 1.0-learn_parm->epsilon_crit)
	  loss+=1.0-(lin[i]-model->b)*(double)label[i];
	model_length+=a[i]*label[i]*lin[i];
      }
      model_length=sqrt(model_length);
      fprintf(stdout,"L1 loss: loss=%.5f\n",loss);
      fprintf(stdout,"Norm of weight vector: |w|=%.5f\n",model_length);
      example_length=estimate_sphere(model,kernel_parm); 
      fprintf(stdout,"Norm of longest example vector: |x|=%.5f\n",
	      length_of_longest_document_vector(docs,totdoc,kernel_parm));
      fprintf(stdout,"Estimated VCdim of classifier: VCdim<=%.5f\n",
	      estimate_margin_vcdim(model,model_length,example_length,
				    kernel_parm));
      if((!learn_parm->remove_inconsistent) && (!transduction)) {
	runtime_start_xa=get_runtime();
	if(verbosity>=1) {
	  printf("Computing XiAlpha-estimates..."); fflush(stdout);
	}
	compute_xa_estimates(model,label,unlabeled,totdoc,docs,lin,a,
			     kernel_parm,learn_parm,&(model->xa_error),
			     &(model->xa_recall),&(model->xa_precision));
	if(verbosity>=1) {
	  printf("done\n");
	}
	printf("Runtime for XiAlpha-estimates in cpu-seconds: %.2f\n",
	       (get_runtime()-runtime_start_xa)/100.0);
	
	fprintf(stdout,"XiAlpha-estimate of the error: error<=%.2f%% (rho=%.2f,depth=%ld)\n",
		model->xa_error,learn_parm->rho,learn_parm->xa_depth);
	fprintf(stdout,"XiAlpha-estimate of the recall: recall=>%.2f%% (rho=%.2f,depth=%ld)\n",
		model->xa_recall,learn_parm->rho,learn_parm->xa_depth);
	fprintf(stdout,"XiAlpha-estimate of the precision: precision=>%.2f%% (rho=%.2f,depth=%ld)\n",
		model->xa_precision,learn_parm->rho,learn_parm->xa_depth);
      }
      else if(!learn_parm->remove_inconsistent) {
	estimate_transduction_quality(model,label,unlabeled,totdoc,docs,lin);
      }
    }
    if(verbosity>=1) {
      printf("Number of kernel evaluations: %ld\n",kernel_cache_statistic);
    }
  }


  /* leave-one-out testing starts now */
  if(learn_parm->compute_loo) {
    /* save results of training on full dataset for leave-one-out */
    runtime_start_loo=get_runtime();
    for(i=0;i<totdoc;i++) {
      xi_fullset[i]=1.0-((lin[i]-model->b)*(double)label[i]);
      if(xi_fullset[i]<0) xi_fullset[i]=0;
      a_fullset[i]=a[i];
    }
    if(verbosity>=1) {
      printf("Computing leave-one-out");
    }
    
    /* repeat this loop for every held-out example */
    for(heldout=0;(heldout<totdoc);heldout++) {
      if(learn_parm->rho*a_fullset[heldout]*r_delta_sq+xi_fullset[heldout]

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
色噜噜夜夜夜综合网| 亚洲色欲色欲www| 日韩你懂的在线播放| 5566中文字幕一区二区电影| 欧美日韩精品电影| 欧美日韩综合在线| 欧美日韩免费观看一区三区| 欧美午夜理伦三级在线观看| 日本精品裸体写真集在线观看 | 成人精品视频网站| 国产精品小仙女| 成人综合激情网| gogogo免费视频观看亚洲一| 99久久精品99国产精品| 97精品久久久午夜一区二区三区| 91影院在线观看| 日本精品免费观看高清观看| 欧美三级视频在线播放| 欧美精品乱码久久久久久按摩| 欧美精品黑人性xxxx| 日韩精品自拍偷拍| 久久久久久久久久久电影| 中文幕一区二区三区久久蜜桃| 国产精品久久福利| 一区二区三区在线影院| 日韩成人免费电影| 激情深爱一区二区| www.日本不卡| 欧美无砖专区一中文字| 日韩欧美一级片| 国产精品免费久久| 亚洲精品视频免费看| 亚洲午夜免费电影| 久久99国产精品久久99果冻传媒| 国产一区二区不卡老阿姨| 99国产精品久| 欧美高清视频www夜色资源网| 精品国偷自产国产一区| 欧美国产日韩亚洲一区| 亚洲国产美国国产综合一区二区| 丝袜美腿成人在线| 国产在线不卡一卡二卡三卡四卡| 成人黄色电影在线| 欧美精品久久久久久久多人混战| 久久亚洲一区二区三区四区| 专区另类欧美日韩| 免费成人在线播放| 97久久精品人人澡人人爽| 欧美一区二区福利在线| 国产精品国产三级国产a| 日韩黄色在线观看| 成人国产精品免费观看动漫| 欧美精品三级在线观看| 亚洲国产高清不卡| 奇米色一区二区| 成人教育av在线| 日韩视频免费观看高清完整版在线观看| 国产亚洲欧美日韩日本| 亚洲第一会所有码转帖| 成人午夜私人影院| 日韩一区二区在线免费观看| 亚洲人成影院在线观看| 国产在线精品免费| 555www色欧美视频| 国产精品一二三四五| 欧美日韩一级二级| 国产精品色眯眯| 蜜桃av一区二区在线观看 | 欧美激情一二三区| 蜜臀av一级做a爰片久久| 日本道色综合久久| 国产欧美久久久精品影院| 青青草成人在线观看| 在线观看成人小视频| 国产精品不卡一区二区三区| 麻豆国产精品777777在线| 欧美性高清videossexo| 国产精品成人网| 国产精一区二区三区| 日韩视频国产视频| 日韩激情中文字幕| 色94色欧美sute亚洲线路二| 中文字幕精品一区二区三区精品| 免费精品99久久国产综合精品| 日本道精品一区二区三区| 国产精品电影一区二区| 国产激情91久久精品导航| 日韩一区二区免费视频| 视频一区国产视频| 欧美老女人第四色| 亚洲制服丝袜在线| 91福利社在线观看| 一区二区三区在线观看视频| 97久久精品人人澡人人爽| 国产精品短视频| 成人精品视频一区| 国产精品久久久久影院色老大| 国产高清久久久久| 国产日韩欧美精品一区| 激情五月婷婷综合网| 日韩欧美国产三级| 精品一区免费av| 精品成人佐山爱一区二区| 经典三级一区二区| 久久综合久久综合亚洲| 国产一区91精品张津瑜| 精品精品国产高清a毛片牛牛 | 五月天网站亚洲| 欧美日韩一本到| 婷婷中文字幕综合| 717成人午夜免费福利电影| 舔着乳尖日韩一区| 日韩视频123| 极品尤物av久久免费看| 裸体一区二区三区| 日韩欧美高清在线| 国产一区二区免费在线| 中文字幕av资源一区| 99热99精品| 亚洲bt欧美bt精品| 日韩欧美卡一卡二| 国产精品一卡二| 亚洲欧洲韩国日本视频| 色吧成人激情小说| 性做久久久久久免费观看| 666欧美在线视频| 狠狠色2019综合网| 国产偷国产偷精品高清尤物| 成人免费毛片a| 亚洲一级二级三级| 欧美一级生活片| 国产真实精品久久二三区| 国产欧美精品在线观看| 99re视频精品| 日韩和的一区二区| 精品久久久久久久一区二区蜜臀| 国内精品久久久久影院一蜜桃| 国产日产欧美一区二区视频| 色综合一区二区| 日本视频一区二区三区| 久久尤物电影视频在线观看| 福利一区福利二区| 亚洲一区二区视频在线观看| 日韩精品综合一本久道在线视频| 国产99久久久国产精品免费看| 亚洲精品自拍动漫在线| 日韩欧美综合在线| 97精品久久久久中文字幕| 日本视频一区二区三区| 国产精品少妇自拍| 欧美一区国产二区| 99热精品一区二区| 免费视频最近日韩| 亚洲免费高清视频在线| 欧美一级一区二区| 色婷婷激情综合| 国产一区欧美二区| 一区二区成人在线| 国产午夜精品一区二区三区视频| 欧美午夜视频网站| 国产成人精品一区二| 丝袜美腿高跟呻吟高潮一区| 国产精品视频第一区| 日韩亚洲欧美高清| 欧美最新大片在线看| 国产高清不卡一区二区| 日韩国产在线一| 亚洲美女视频在线| 国产亚洲一区二区三区| 91精品国产乱码| 日本黄色一区二区| 成人性生交大片免费看视频在线| 日产精品久久久久久久性色| 最近日韩中文字幕| 久久午夜电影网| 5858s免费视频成人| 色噜噜狠狠色综合欧洲selulu| 国产在线播放一区三区四| 日韩成人一区二区三区在线观看| 日韩一区在线看| 国产欧美精品在线观看| 精品久久99ma| 91精品欧美久久久久久动漫| 在线中文字幕不卡| av爱爱亚洲一区| 国产69精品久久久久777| 韩国v欧美v日本v亚洲v| 美国毛片一区二区| 天天色综合天天| 亚洲18影院在线观看| 一区二区三区波多野结衣在线观看 | 国产精品一区专区| 九色|91porny| 美女在线观看视频一区二区| 亚洲一区二区三区国产| 亚洲欧美另类小说视频| 亚洲欧洲www| 最新国产成人在线观看| 国产精品久久久久影院亚瑟| 亚洲国产精品av|