亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? svm_hideo.c

?? 支持向量機的c源代碼 比較全面具體
?? C
?? 第 1 頁 / 共 2 頁
字號:
/***********************************************************************/
/*                                                                     */
/*   svm_hideo.c                                                       */
/*                                                                     */
/*   The Hildreth and D'Espo solver specialized for SVMs.              */
/*                                                                     */
/*   Author: Thorsten Joachims                                         */
/*   Date: 02.07.02                                                    */
/*                                                                     */
/*   Copyright (c) 2002  Thorsten Joachims - All rights reserved       */
/*                                                                     */
/*   This software is available for non-commercial use only. It must   */
/*   not be modified and distributed without prior permission of the   */
/*   author. The author is not responsible for implications from the   */
/*   use of this software.                                             */
/*                                                                     */
/***********************************************************************/

# include <math.h>
# include "svm_common.h"

/* 
  solve the quadratic programming problem
 
  minimize   g0 * x + 1/2 x' * G * x
  subject to ce*x = ce0
             l <= x <= u
 
  The linear constraint vector ce can only have -1/+1 as entries 
*/

/* Common Block Declarations */

long verbosity;

# define PRIMAL_OPTIMAL      1
# define DUAL_OPTIMAL        2
# define MAXITER_EXCEEDED    3
# define NAN_SOLUTION        4
# define ONLY_ONE_VARIABLE   5

# define LARGEROUND          0
# define SMALLROUND          1

/* /////////////////////////////////////////////////////////////// */

# define DEF_PRECISION          1E-5
# define DEF_MAX_ITERATIONS     200
# define DEF_LINDEP_SENSITIVITY 1E-8
# define EPSILON_HIDEO          1E-20
# define EPSILON_EQ             1E-5

double *optimize_qp(QP *, double *, long, double *, LEARN_PARM *);
double *primal=0,*dual=0;
long   precision_violations=0;
double opt_precision=DEF_PRECISION;
long   maxiter=DEF_MAX_ITERATIONS;
double lindep_sensitivity=DEF_LINDEP_SENSITIVITY;
double *buffer;
long   *nonoptimal;

long  smallroundcount=0;
long  roundnumber=0;

/* /////////////////////////////////////////////////////////////// */

void *my_malloc();

int optimize_hildreth_despo(long,long,double,double,double,long,long,long,double,double *,
			    double *,double *,double *,double *,double *,
			    double *,double *,double *,long *,double *);
int solve_dual(long,long,double,double,long,double *,double *,double *,
	       double *,double *,double *,double *,double *,double *,
	       double *,double *,double *,double *,long);

void linvert_matrix(double *, long, double *, double, long *);
void lprint_matrix(double *, long);
void ladd_matrix(double *, long, double);
void lcopy_matrix(double *, long, double *);
void lswitch_rows_matrix(double *, long, long, long);
void lswitchrk_matrix(double *, long, long, long);

double calculate_qp_objective(long, double *, double *, double *);



double *optimize_qp(qp,epsilon_crit,nx,threshold,learn_parm)
QP *qp;
double *epsilon_crit;
long nx; /* Maximum number of variables in QP */
double *threshold; 
LEARN_PARM *learn_parm;
/* start the optimizer and return the optimal values */
/* The HIDEO optimizer does not necessarily fully solve the problem. */
/* Since it requires a strictly positive definite hessian, the solution */
/* is restricted to a linear independent subset in case the matrix is */
/* only semi-definite. */
{
  long i,j;
  int result;
  double eq;

  roundnumber++;

  if(!primal) { /* allocate memory at first call */
    primal=(double *)my_malloc(sizeof(double)*nx);
    dual=(double *)my_malloc(sizeof(double)*((nx+1)*2));
    nonoptimal=(long *)my_malloc(sizeof(long)*(nx));
    buffer=(double *)my_malloc(sizeof(double)*((nx+1)*2*(nx+1)*2+
					       nx*nx+2*(nx+1)*2+2*nx+1+2*nx+
					       nx+nx+nx*nx));
    (*threshold)=0;
    for(i=0;i<nx;i++) {
      primal[i]=0;
    }
  }

  if(verbosity>=4) { /* really verbose */
    printf("\n\n");
    eq=qp->opt_ce0[0];
    for(i=0;i<qp->opt_n;i++) {
      eq+=qp->opt_xinit[i]*qp->opt_ce[i];
      printf("%f: ",qp->opt_g0[i]);
      for(j=0;j<qp->opt_n;j++) {
	printf("%f ",qp->opt_g[i*qp->opt_n+j]);
      }
      printf(": a=%.10f < %f",qp->opt_xinit[i],qp->opt_up[i]);
      printf(": y=%f\n",qp->opt_ce[i]);
    }
    if(qp->opt_m) {
      printf("EQ: %f*x0",qp->opt_ce[0]);
      for(i=1;i<qp->opt_n;i++) {
	printf(" + %f*x%ld",qp->opt_ce[i],i);
      }
      printf(" = %f\n\n",-qp->opt_ce0[0]);
    }
  }

  result=optimize_hildreth_despo(qp->opt_n,qp->opt_m,
				 opt_precision,(*epsilon_crit),
				 learn_parm->epsilon_a,maxiter,
				 /* (long)PRIMAL_OPTIMAL, */
				 (long)0, (long)0,
				 lindep_sensitivity,
				 qp->opt_g,qp->opt_g0,qp->opt_ce,qp->opt_ce0,
				 qp->opt_low,qp->opt_up,primal,qp->opt_xinit,
				 dual,nonoptimal,buffer);
  if(verbosity>=3) { 
    printf("return(%d)...",result);
  }

  if(learn_parm->totwords < learn_parm->svm_maxqpsize) { 
    /* larger working sets will be linear dependent anyway */
    learn_parm->svm_maxqpsize=maxl(learn_parm->totwords,(long)2);
  }

  if(result == NAN_SOLUTION) {
    lindep_sensitivity*=2;  /* throw out linear dependent examples more */
                            /* generously */
    if(learn_parm->svm_maxqpsize>2) {
      learn_parm->svm_maxqpsize--;  /* decrease size of qp-subproblems */
    }
    precision_violations++;
  }

  /* take one round of only two variable to get unstuck */
  if((result != PRIMAL_OPTIMAL) || (!(roundnumber % 31))) {

    smallroundcount++;

    result=optimize_hildreth_despo(qp->opt_n,qp->opt_m,
				   opt_precision,(*epsilon_crit),
				   learn_parm->epsilon_a,(long)maxiter,
				   (long)PRIMAL_OPTIMAL,(long)SMALLROUND,
				   lindep_sensitivity,
				   qp->opt_g,qp->opt_g0,qp->opt_ce,qp->opt_ce0,
				   qp->opt_low,qp->opt_up,primal,qp->opt_xinit,
				   dual,nonoptimal,buffer);
    if(verbosity>=3) { 
      printf("return_srd(%d)...",result);
    }

    if(result != PRIMAL_OPTIMAL) {
      if(result != ONLY_ONE_VARIABLE) 
	precision_violations++;
      if(result == MAXITER_EXCEEDED) 
	maxiter+=100;
      if(result == NAN_SOLUTION) {
	lindep_sensitivity*=2;  /* throw out linear dependent examples more */
	                        /* generously */
	/* results not valid, so return inital values */
	for(i=0;i<qp->opt_n;i++) {
	  primal[i]=qp->opt_xinit[i];
	}
      }
    }
  }


  if(precision_violations > 50) {
    precision_violations=0;
    (*epsilon_crit)*=10.0; 
    if(verbosity>=1) {
      printf("\nWARNING: Relaxing epsilon on KT-Conditions (%f).\n",
	     (*epsilon_crit));
    }
  }	  

  if((qp->opt_m>0) && (result != NAN_SOLUTION) && (!isnan(dual[1]-dual[0])))
    (*threshold)=dual[1]-dual[0];
  else
    (*threshold)=0;

  if(verbosity>=4) { /* really verbose */
    printf("\n\n");
    eq=qp->opt_ce0[0];
    for(i=0;i<qp->opt_n;i++) {
      eq+=primal[i]*qp->opt_ce[i];
      printf("%f: ",qp->opt_g0[i]);
      for(j=0;j<qp->opt_n;j++) {
	printf("%f ",qp->opt_g[i*qp->opt_n+j]);
      }
      printf(": a=%.30f",primal[i]);
      printf(": nonopti=%ld",nonoptimal[i]);
      printf(": y=%f\n",qp->opt_ce[i]);
    }
    printf("eq-constraint=%.30f\n",eq);
    printf("b=%f\n",(*threshold));
    printf(" smallroundcount=%ld ",smallroundcount);
  }

  return(primal);
}



int optimize_hildreth_despo(n,m,precision,epsilon_crit,epsilon_a,maxiter,goal,
			    smallround,lindep_sensitivity,g,g0,ce,ce0,low,up,
			    primal,init,dual,lin_dependent,buffer)
     long   n;            /* number of variables */
     long   m;            /* number of linear equality constraints [0,1] */
     double precision;    /* solve at least to this dual precision */
     double epsilon_crit; /* stop, if KT-Conditions approx fulfilled */
     double epsilon_a;    /* precision of alphas at bounds */
     long   maxiter;      /* stop after this many iterations */
     long   goal;         /* keep going until goal fulfilled */
     long   smallround;   /* use only two variables of steepest descent */
     double lindep_sensitivity; /* epsilon for detecting linear dependent ex */
     double *g;           /* hessian of objective */
     double *g0;          /* linear part of objective */
     double *ce,*ce0;     /* linear equality constraints */
     double *low,*up;     /* box constraints */
     double *primal;      /* primal variables */
     double *init;        /* initial values of primal */
     double *dual;        /* dual variables */
     long   *lin_dependent;
     double *buffer;
{
  long i,j,k,from,to,n_indep,changed;
  double sum,bmin=0,bmax=0;
  double *d,*d0,*ig,*dual_old,*temp,*start;       
  double *g0_new,*g_new,*ce_new,*ce0_new,*low_new,*up_new;
  double add,t;
  int result;
  double obj_before,obj_after; 
  long b1,b2;

  g0_new=&(buffer[0]);    /* claim regions of buffer */
  d=&(buffer[n]);
  d0=&(buffer[n+(n+m)*2*(n+m)*2]);
  ce_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2]);
  ce0_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n]);
  ig=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m]);
  dual_old=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n]);
  low_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2]);
  up_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n]);
  start=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n+n]);
  g_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n+n+n]);
  temp=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n+n+n+n*n]);

  b1=-1;
  b2=-1;
  for(i=0;i<n;i++) {   /* get variables with steepest feasible descent */
    sum=g0[i];         
    for(j=0;j<n;j++) 
      sum+=init[j]*g[i*n+j];
    sum=sum*ce[i];
    if(((b1==-1) || (sum<bmin)) 
       && (!((init[i]<=(low[i]+epsilon_a)) && (ce[i]<0.0)))
       && (!((init[i]>=( up[i]-epsilon_a)) && (ce[i]>0.0)))
       ) {
      bmin=sum;
      b1=i;
    }
    if(((b2==-1) || (sum>=bmax)) 
       && (!((init[i]<=(low[i]+epsilon_a)) && (ce[i]>0.0)))
       && (!((init[i]>=( up[i]-epsilon_a)) && (ce[i]<0.0)))
       ) {
      bmax=sum;
      b2=i;
    }
  }
  /* in case of unbiased hyperplane, the previous projection on */
  /* equality constraint can lead to b1 or b2 being -1. */
  if((b1 == -1) || (b2 == -1)) {
    b1=maxl(b1,b2);
    b2=maxl(b1,b2);
  }

  for(i=0;i<n;i++) {
    start[i]=init[i];
  }

  /* in case both example vectors are linearly dependent */
  add=0;
  changed=0;
  if((b1 != b2) && (m==1)) {
    if((g[b1*n+b2] == g[b1*n+b1]) && (g[b1*n+b2] == g[b2*n+b2])) {
      if(ce[b1] == ce[b2]) { 
	if(g0[b1] < g0[b2]) { /* set b1 to upper bound */
	  changed=1;
	  t=up[b1]-init[b1];
	  if((init[b2]-low[b2]) < t) {
	    t=init[b2]-low[b2];
	  }
	  start[b1]=init[b1]+t;
	  start[b2]=init[b2]-t;
	}
	else if(g0[b1] > g0[b2]) { /* set b2 to upper bound */
	  changed=1;
	  t=up[b2]-init[b2];
	  if((init[b1]-low[b1]) < t) {
	    t=init[b1]-low[b1];
	  }
	  start[b1]=init[b1]-t;
	  start[b2]=init[b2]+t;
	}
	else { /* distribute evenly (this is not correct) */
	  changed=1;
	  start[b1]=(init[b1]+init[b2])/2.0;
	  start[b2]=(init[b1]+init[b2])/2.0;
	  if(start[b2] > up[b2]) {
	    t=start[b2]-up[b2];
	    start[b2]=up[b2];
	    start[b1]+=t;
	  }
	  if(start[b1] > up[b1]) {
	    t=start[b1]-up[b1];
	    start[b1]=up[b1];
	    start[b2]+=t;
	  }
	}
      }
    }
    else if((-g[b1*n+b2] == g[b1*n+b1]) && (-g[b1*n+b2] == g[b2*n+b2])) {
      if((ce[b1] != ce[b2]) && ((g0[b1]+g0[b2]) <= 0)){ /* set to upper bound */
	changed=1;
	t=up[b1]-init[b1];
	if((up[b2]-init[b2]) < t) {
	  t=up[b2]-init[b2];
	}
	start[b1]=init[b1]+t;
	start[b2]=init[b2]+t;
      }     
      else if((ce[b1] != ce[b2]) && ((g0[b1]+g0[b2]) > 0)){ /* set to lower bound */
	changed=1;
	t=init[b1]-low[b1];
	if((init[b2]-low[b2]) < t) {
	  t=init[b2]-low[b2];
	}
	start[b1]=init[b1]-t;
	start[b2]=init[b2]-t;
      }
      else { /* (ce[b1] == ce[b2]) */
	t=-(g0[b2]-g0[b1]-(ce[b1]+ce[b2])*ce0[0]*g[b1*n+b1])/(4*g[b1*n+b1])-init[b2];
	if((up[b2]-init[b2]) < t) {
	  t=up[b2]-init[b2];
	}
	if((init[b2]-low[b2]) < -t) {
	  t=-(init[b2]-low[b2]);
	}
	if((up[b1]-init[b1]) < -t) {
	  t=-(up[b1]-init[b1]);
	}
	if((init[b1]-low[b1]) < t) {
	  t=init[b1]-low[b1];
	}
	start[b1]=init[b1]-t;
	start[b2]=init[b2]+t;
      }	
    }
    /* if we have a biased hyperplane, then adding a constant to the */
    /* hessian does not change the solution. So that is done for examples */
    /* with zero diagonal entry, since HIDEO cannot handle them. */
    else if((m>0) 
	    && ((fabs(g[b1*n+b1]) < lindep_sensitivity) 
		|| (fabs(g[b2*n+b2]) < lindep_sensitivity))) {
      add+=0.093274;
    }    
    /* in case both examples are linear dependent */
    else if((m>0) 
	    && (g[b1*n+b2] != 0 && g[b2*n+b2] != 0)
	    && (fabs(g[b1*n+b1]/g[b1*n+b2] - g[b1*n+b2]/g[b2*n+b2])
		< lindep_sensitivity)) { 
      add+=0.078274;
    }
  }

  /* printf("b1=%ld,b2=%ld\n",b1,b2); */

  lcopy_matrix(g,n,d);
  if((m==1) && (add>0.0)) {
    for(j=0;j<n;j++) {
      for(k=0;k<n;k++) {
	d[j*n+k]+=add*ce[j]*ce[k];
      }
    }
  }
  else {
    add=0.0;
  }

  if(n>2) {                    /* switch, so that variables are better mixed */
    lswitchrk_matrix(d,n,b1,(long)0); 
    if(b2 == 0) 
      lswitchrk_matrix(d,n,b1,(long)1); 
    else
      lswitchrk_matrix(d,n,b2,(long)1); 
  }
  if(smallround == SMALLROUND) {
    for(i=2;i<n;i++) {
      lin_dependent[i]=1;
    }
    if(m>0) { /* for biased hyperplane, pick two variables */
      lin_dependent[0]=0;
      lin_dependent[1]=0;
    }
    else {    /* for unbiased hyperplane, pick only one variable */
      lin_dependent[0]=smallroundcount % 2;
      lin_dependent[1]=(smallroundcount+1) % 2;
    }
  }
  else {
    for(i=0;i<n;i++) {
      lin_dependent[i]=0;
    }
  }
  linvert_matrix(d,n,ig,lindep_sensitivity,lin_dependent);
  if(n>2) {                    /* now switch back */
    if(b2 == 0) {
      lswitchrk_matrix(ig,n,b1,(long)1); 
      i=lin_dependent[1];  
      lin_dependent[1]=lin_dependent[b1];
      lin_dependent[b1]=i;
    }
    else {
      lswitchrk_matrix(ig,n,b2,(long)1); 
      i=lin_dependent[1];  
      lin_dependent[1]=lin_dependent[b2];
      lin_dependent[b2]=i;
    }
    lswitchrk_matrix(ig,n,b1,(long)0); 
    i=lin_dependent[0];  
    lin_dependent[0]=lin_dependent[b1];
    lin_dependent[b1]=i;
  }
  /* lprint_matrix(d,n); */
  /* lprint_matrix(ig,n); */

  lcopy_matrix(g,n,g_new);   /* restore g_new matrix */
  if(add>0)
    for(j=0;j<n;j++) {
      for(k=0;k<n;k++) {
	g_new[j*n+k]+=add*ce[j]*ce[k];
      }
    }

  for(i=0;i<n;i++) {  /* fix linear dependent vectors */
    g0_new[i]=g0[i]+add*ce0[0]*ce[i];
  }
  if(m>0) ce0_new[0]=-ce0[0];
  for(i=0;i<n;i++) {  /* fix linear dependent vectors */
    if(lin_dependent[i]) {
      for(j=0;j<n;j++) {
	if(!lin_dependent[j]) {
	  g0_new[j]+=start[i]*g_new[i*n+j];
	}
      }
      if(m>0) ce0_new[0]-=(start[i]*ce[i]);
    }
  }
  from=0;   /* remove linear dependent vectors */
  to=0;
  n_indep=0;

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
成人小视频免费在线观看| 欧美另类videos死尸| 国产精品久久久久久一区二区三区| 亚洲一区二区三区在线| 播五月开心婷婷综合| 久久精品亚洲国产奇米99| 国产不卡一区视频| 亚洲麻豆国产自偷在线| 欧美日韩精品一区二区三区| 免费xxxx性欧美18vr| 一区二区三区色| 欧美日韩视频在线观看一区二区三区| 91农村精品一区二区在线| 亚洲午夜一区二区| 国产精品久久夜| 亚洲精品在线三区| 3d动漫精品啪啪一区二区竹菊| 久久久久久亚洲综合影院红桃| 午夜伊人狠狠久久| 精品日韩成人av| 一本久道久久综合中文字幕| 粉嫩av一区二区三区粉嫩 | 亚洲丰满少妇videoshd| 亚洲精品日产精品乱码不卡| 一区二区三区四区在线| 精品国产1区二区| 欧美变态口味重另类| 欧美日韩高清不卡| 欧美日韩你懂得| 99re成人精品视频| 色呦呦日韩精品| 91精品综合久久久久久| 久久亚洲精精品中文字幕早川悠里| 亚洲高清在线精品| 丝袜国产日韩另类美女| 丁香另类激情小说| 91精品91久久久中77777| 欧美一区二区三区视频免费| 欧美精品aⅴ在线视频| 欧美日韩国产精品成人| 日韩免费视频一区二区| 亚洲欧美综合在线精品| 日韩电影一二三区| 成人av高清在线| 欧美一区二区在线免费观看| 国产精品视频观看| 无码av中文一区二区三区桃花岛| 精品播放一区二区| 亚洲一区二区在线观看视频| 秋霞电影网一区二区| 99久久精品免费看国产 | 亚洲品质自拍视频网站| 天天操天天干天天综合网| 国内成人自拍视频| 337p日本欧洲亚洲大胆精品 | 蜜臀a∨国产成人精品| 成人黄页在线观看| 日韩精品一区二区三区视频在线观看 | 欧美成人video| 午夜精品免费在线| 91色视频在线| 亚洲欧美一区二区三区久本道91 | av高清不卡在线| 久久精品欧美一区二区三区不卡 | 蜜臀久久99精品久久久久久9| 日韩一区二区三区视频在线 | 粉嫩av一区二区三区| 精品日韩99亚洲| 亚洲成人动漫在线免费观看| 色系网站成人免费| 久久久久久久久久久黄色| 日本不卡视频在线观看| 制服丝袜一区二区三区| 黄色成人免费在线| 国产精品视频一区二区三区不卡| 国产午夜精品理论片a级大结局| 欧洲色大大久久| 亚洲精品成人少妇| 欧美裸体一区二区三区| 秋霞午夜av一区二区三区| 亚洲国产成人私人影院tom| 国产成人精品www牛牛影视| 亚洲最大色网站| 欧美精品一区二区久久婷婷 | 精品理论电影在线| 国产乱码精品一区二区三 | 亚洲国产高清在线| 欧美在线观看视频一区二区| 国产一区二区三区美女| 亚洲mv在线观看| 亚洲精品乱码久久久久久日本蜜臀| 看片网站欧美日韩| 国产亚洲一区二区在线观看| 国产在线国偷精品产拍免费yy | 亚洲欧美日韩成人高清在线一区| 久久国产剧场电影| 亚洲精品乱码久久久久久久久 | 欧美一区二区高清| 色诱亚洲精品久久久久久| 韩国视频一区二区| 久久精品久久综合| 国产成人午夜精品5599| 黑人精品欧美一区二区蜜桃| 中文字幕中文在线不卡住| 国产亚洲精品久| 精品国产自在久精品国产| 日韩欧美一级在线播放| 欧美一区二区私人影院日本| 欧美日韩一区国产| 欧美午夜宅男影院| 欧美精品一级二级| 精品欧美乱码久久久久久| 欧美一级xxx| 日韩午夜激情av| 2021中文字幕一区亚洲| 国产精品传媒视频| 日韩av一区二区三区| 成人av网址在线| 欧美不卡一二三| 一区二区三区在线免费视频| 美日韩一级片在线观看| 国产美女主播视频一区| 99久久久国产精品免费蜜臀| 99精品国产热久久91蜜凸| 色香蕉成人二区免费| 日韩一区二区三| 国产精品色一区二区三区| 亚洲欧美综合色| 国产成人在线免费观看| www.色综合.com| 91麻豆精品91久久久久同性| 久久久久久久久久久久久女国产乱| 老司机午夜精品| 91久久精品一区二区| 亚洲乱码国产乱码精品精可以看 | 国产精品看片你懂得| 中文字幕av一区二区三区免费看| 99视频国产精品| 日韩午夜av电影| 亚洲成人av福利| 国产乱码精品一区二区三区av| 亚洲成人在线网站| 91免费版pro下载短视频| 2023国产一二三区日本精品2022| 在线观看网站黄不卡| 制服视频三区第一页精品| 亚洲人精品午夜| 成人精品鲁一区一区二区| 精品毛片乱码1区2区3区| 蜜臀久久99精品久久久久久9| 丝袜脚交一区二区| 欧美视频一二三区| 国产人成一区二区三区影院| 国产一区欧美一区| 精品国产a毛片| 国产精品99久久久久久似苏梦涵| 国产一区二区三区日韩| 在线观看一区日韩| 日韩中文字幕区一区有砖一区 | 7777精品伊人久久久大香线蕉经典版下载 | 日日摸夜夜添夜夜添亚洲女人| 中文字幕不卡的av| 99国产欧美另类久久久精品| 亚洲蜜臀av乱码久久精品蜜桃| 亚洲精品乱码久久久久久久久 | 成人精品小蝌蚪| 国产精品免费免费| 在线观看精品一区| 久久精品国产精品青草| 国产精品电影一区二区三区| 成熟亚洲日本毛茸茸凸凹| 亚洲激情图片小说视频| 欧美一卡2卡3卡4卡| 成人国产精品免费观看视频| 悠悠色在线精品| 亚洲精品在线电影| 欧美三级蜜桃2在线观看| 激情综合色播五月| 亚洲二区视频在线| 国产欧美综合在线| 精品少妇一区二区| 欧美午夜精品久久久久久孕妇| 久久久精品人体av艺术| 欧美日本在线视频| 在线视频欧美精品| 成人av电影在线播放| 韩国中文字幕2020精品| 亚洲va欧美va人人爽| 亚洲综合小说图片| 一区二区三区毛片| 国产精品亲子伦对白| 国产精品天天摸av网| 精品盗摄一区二区三区| 亚洲精品一区二区三区福利| 91精品国产美女浴室洗澡无遮挡| 天堂久久久久va久久久久| 亚洲天堂成人网| 亚洲国产精品综合小说图片区| 欧美日韩精品一区视频| 欧美日本乱大交xxxxx|