?? mcf_levelsets3d.cpp
字號:
/*------------------------------------------------------------------------------------------- File : mcf_levelsets3D.cpp Description : Implementation of the Mean Curvature Flow on Surfaces using the framework of Level Sets 3D. Copyright : David Tschumperle - http://www.greyc.ensicaen.fr/~dtschump/ This software is governed by the CeCILL license under French law and abiding by the rules of distribution of free software. You can use, modify and/ or redistribute the software under the terms of the CeCILL license as circulated by CEA, CNRS and INRIA at the following URL "http://www.cecill.info". As a counterpart to the access to the source code and rights to copy, modify and redistribute granted by the license, users are provided only with a limited warranty and the software's author, the holder of the economic rights, and the successive licensors have only limited liability. In this respect, the user's attention is drawn to the risks associated with loading, using, modifying and/or developing or reproducing the software by the user in light of its specific status of free software, that may mean that it is complicated to manipulate, and that also therefore means that it is reserved for developers and experienced professionals having in-depth computer knowledge. Users are therefore encouraged to load and test the software's suitability as regards their requirements in conditions enabling the security of their systems and/or data to be ensured and, more generally, to use and operate it in the same conditions as regards security. The fact that you are presently reading this means that you have had knowledge of the CeCILL license and that you accept its terms.-----------------------------------------------------------------------------------------*/#include "../CImg.h"using namespace cimg_library;// The undef below is necessary when using a non-standard compiler.#ifdef cimg_use_visualcpp6#define std#endif// Apply the 3D Eikonal PDE used to init and re-init distance function//---------------------------------------------------------------------template<typename T> CImg<T>& eikonal_PDE(CImg<T>& img, const unsigned int nb_iter=10, const float dt=1, const float narrow=4.0f) { CImg<T> veloc(img.dimx(),img.dimy(),img.dimz(),img.dimv()); CImg_3x3x3(I,float); for (unsigned int iter=0; iter<nb_iter; iter++) { cimg_for3x3x3(img,x,y,z,0,I) if (cimg::abs(Iccc)<narrow && Iccc*Incc>0 && Iccc*Ipcc>0 && Iccc*Icnc>0 && Iccc*Icpc>0 && Iccc*Iccp>0 && Iccc*Iccn>0) { const float gx = 0.5f*(Incc-Ipcc), gy = 0.5f*(Icnc-Icpc), gz = 0.5f*(Iccn-Iccp), sgn = -(float)cimg::sign(Iccc), ix = (gx*sgn)>0?(Incc-Iccc):(Iccc-Ipcc), iy = (gy*sgn)>0?(Icnc-Iccc):(Iccc-Icpc), iz = (gz*sgn)>0?(Iccn-Iccc):(Iccc-Iccp), ng = (float)std::sqrt(gx*gx+gy*gy+gz*gz), ngx = ng>1e-5f?gx/ng:0, ngy = ng>1e-5f?gy/ng:0, ngz = ng>1e-5f?gz/ng:0; veloc(x,y,z) = (T)sgn*(ngx*ix + ngy*iy + ngz*iz - 1); } else veloc(x,y,z) = 0; const CImgStats stats(veloc,false); const double xdt = dt/cimg::max(cimg::abs(stats.min),cimg::abs(stats.max)); img+=xdt*veloc; } return img;}// Apply the Mean curvature flow PDE//-----------------------------------template<typename T> CImg<T>& mcf_PDE(CImg<T>& img, const unsigned int nb_iter, const float dt=0.25f, const float narrow=4.0f) { CImg<T> veloc(img.dimx(),img.dimy(),img.dimz(),img.dimv()); CImg_3x3x3(I,float); for (unsigned int iter=0; iter<nb_iter; iter++) { cimg_for3x3x3(img,x,y,z,0,I) if (cimg::abs(Iccc)<narrow) { const float ix = 0.5f*(Incc-Ipcc), iy = 0.5f*(Icnc-Icpc), iz = 0.5f*(Iccn-Iccp), norm = (float)std::sqrt(1e-5f+ix*ix+iy*iy+iz*iz), ixx = Incc+Ipcc-2*Iccc, ixy = 0.25f*(Ippc+Innc-Inpc-Ipnc), ixz = 0.25f*(Ipcp+Incn-Incp-Ipcn), iyy = Icnc+Icpc-2*Iccc, iyz = 0.25f*(Icpp+Icnn-Icnp-Icpn), izz = Iccn+Iccp-2*Iccc, a = ix/norm, b = iy/norm, c = iz/norm, inn = a*a*ixx + b*b*iyy + c*c*izz + 2*a*b*ixy + 2*a*c*ixz + 2*b*c*iyz; veloc(x,y,z) = ixx+iyy+izz-inn; } else veloc(x,y,z) = 0; const CImgStats stats(veloc,false); const double xdt = dt/cimg::max(cimg::abs(stats.min),cimg::abs(stats.max)); img+=xdt*veloc; } return img;}// Main procedure//----------------int main(int argc,char **argv) { cimg_usage("Mean curvature flow of a surface, using 3D level sets"); const char *file_i = cimg_option("-i",(char*)0,"Input image"); const float dt = cimg_option("-dt",0.05f,"PDE Time step"); const float narrow = cimg_option("-band",5.0f,"Size of the narrow band"); const bool show = cimg_option("-both",false,"Show both evolving and initial surface"); // Define the signed distance map of the initial surface CImg<> img; if (file_i) { const float sigma = cimg_option("-sigma",1.2f,"Segmentation regularity"); const float alpha = cimg_option("-alpha",5.0f,"Region growing tolerance"); img.load(file_i).channel(0); int s[6]; s[0]=-1; CImgDisplay disp(img,"Please select a starting point"); while (s[0]<0) img.feature_selection(s,0,disp); CImg<> region; float tmp[1]={0}; img.draw_fill(s[0],s[1],s[2],tmp,region,alpha); ((img = region.normalize(-1,1))*=-1).blur(sigma); } else { // Create synthetic implicit function img.assign(60,60,60); const float exte[1]={1}, inte[1]={-1}; img.fill(*exte).draw_rectangle(15,15,15,45,45,45,inte).draw_rectangle(25,25,0,35,35,img.dimz()-1,exte). draw_rectangle(0,25,25,img.dimx()-1,35,35,exte).draw_rectangle(25,0,25,35,img.dimy()-1,35,exte); } eikonal_PDE(img,10,0.1f); // Compute corresponding surface triangularization by the marching cube algorithm (isovalue 0) CImgList<> points0; CImgList<unsigned int> faces0; if (show) img.marching_cubes(0,points0,faces0); const CImgList<unsigned char> colors0(faces0.size,CImg<unsigned char>::vector(100,200,255)); const CImgList<> opacities0(faces0.size,1,1,1,1,0.2f); // Perform MCF evolution CImgDisplay disp(256,256,""), disp3d(512,512,"",0,2); float alpha = 0, beta = 0; for (unsigned int iter=0; !disp.is_closed && !disp3d.is_closed && disp.key!=cimg::keyESC && disp3d.key!=cimg::keyESC && disp.key!=cimg::keyQ && disp3d.key!=cimg::keyQ; iter++) { disp.set_title("3D implicit Function (iter. %u)",iter); disp3d.set_title("Mean curvature flow 3D - Isosurface (iter. %u)",iter); // Apply PDE on the distance function mcf_PDE(img,1,dt,narrow); // Do one iteration of mean curvature flow if (!(iter%10)) eikonal_PDE(img,1,0.5f,narrow); // Every 10 steps, do one iteration of distance function re-initialization // Compute surface triangularization by the marching cube algorithm (isovalue 0) CImgList<> points(points0), opacities(opacities0); CImgList<unsigned int> faces(faces0); CImgList<unsigned char> colors(colors0); img.marching_cubes(0,points,faces); opacities.insert(faces.size-colors.size,CImg<>::vector(1.0f)); colors.insert(faces.size-colors.size,CImg<unsigned char>::vector(200,128,100)); const float fact = 3*cimg::max(disp3d.dimx(),disp3d.dimy())/(4.0f*cimg::max(img.dimx(),img.dimy())); cimglist_for(points,l) { // center and rescale the object points[l](0)=(points[l](0)-img.dimx()/2)*fact; points[l](1)=(points[l](1)-img.dimy()/2)*fact; points[l](2)=(points[l](2)-img.dimz()/2)*fact; } // Display 3D object on the display window. CImg<unsigned char> visu(disp3d.dimx(),disp3d.dimy(),1,3,0); const CImg<> rot = CImg<>::rotation_matrix(1,0,0,(beta+=0.01f))*CImg<>::rotation_matrix(0,1,1,(alpha+=0.05f)); cimglist_for(points,ll) points[ll] = rot*points[ll]; visu.draw_object3d(visu.dimx()/2.0f,visu.dimy()/2.0f,0.0f, points,faces,colors,opacities,3, false,500.0,0.0f,0.0f,-8000.0f,0.02f).display(disp3d); img.display(disp.wait(20)); if (disp3d.button || disp3d.key) { unsigned char white[3]={ 255,255,255 }; visu.fill(0).draw_text("Time stopped, press any key to start again",10,10,white). display_object3d(points,faces,colors,opacities,disp3d); disp3d.key = 0; } if (disp.is_resized) disp.resize(false); if (disp3d.is_resized) disp3d.resize(false); } // Exit return 0;}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -