?? wavelet_atrous.cpp
字號:
/*--------------------------------------------------------------------------------------- File : wavelet_atrous.cpp Description : Performs a 2D or 3D 'a trous' wavelet transform (using a cubic spline) on an image or a video sequence. Reference : Starck, J.-L., Murtagh, F. and Bijaoui, A., Image Processing and Data Analysis: The Multiscale Approach, Cambridge University Press, 1998. (Hardback and softback, ISBN 0-521-59084-1 and 0-521-59914-8.) Author : Renaud P閠eri - Renaud.Peteri '@' mines-paris.org Institution : CWI, Amsterdam Date : February 2005 This software is governed by the CeCILL license under French law and abiding by the rules of distribution of free software. You can use, modify and/ or redistribute the software under the terms of the CeCILL license as circulated by CEA, CNRS and INRIA at the following URL "http://www.cecill.info". As a counterpart to the access to the source code and rights to copy, modify and redistribute granted by the license, users are provided only with a limited warranty and the software's author, the holder of the economic rights, and the successive licensors have only limited liability. In this respect, the user's attention is drawn to the risks associated with loading, using, modifying and/or developing or reproducing the software by the user in light of its specific status of free software, that may mean that it is complicated to manipulate, and that also therefore means that it is reserved for developers and experienced professionals having in-depth computer knowledge. Users are therefore encouraged to load and test the software's suitability as regards their requirements in conditions enabling the security of their systems and/or data to be ensured and, more generally, to use and operate it in the same conditions as regards security. The fact that you are presently reading this means that you have had knowledge of the CeCILL license and that you accept its terms. ---------------------------------------------------------------------------------------*/#include <iostream>#include <fstream>#include "../CImg.h"using namespace std;using namespace cimg_library;CImg<float> mask_x(const unsigned char scale) { unsigned char d1 = (unsigned char) pow( 2.0, (double)(scale-1)); unsigned char d2 = (unsigned char) pow( 2.0, (double)(scale)); unsigned char cx = (unsigned char) pow( 2.0, (double)(scale)); unsigned char res = (unsigned char) pow( 2.0, (double)scale); CImg<float> m(2*res +1,1,1);m.fill(0); m(cx) = 6.0; m(cx-d1) = m(cx+d1) =4.0; m(cx-d2) = m(cx+d2) =1.0; m /= 16.0; return m;}CImg<float> mask_y(const unsigned char scale) { unsigned char d1 = (unsigned char) pow( 2.0, (double)(scale-1)); unsigned char d2 = (unsigned char) pow( 2.0, (double)(scale)); unsigned char cy = (unsigned char) pow( 2.0, (double)(scale)); unsigned char res = (unsigned char) pow( 2.0, (double)scale); CImg<float> m(1,2*res +1);m.fill(0); m(0,cy) = 6.0; m(0,cy-d1) = m(0,cy+d1) =4.0; m(0,cy-d2) = m(0,cy+d2) =1.0; m /= 16.0; return m;}CImg<float> mask_t(const unsigned char scale) { unsigned char d1 = (unsigned char) pow( 2.0, (double)(scale-1)); unsigned char d2 = (unsigned char) pow( 2.0, (double)(scale)); unsigned char ct = (unsigned char) pow( 2.0, (double)(scale)); unsigned char res = (unsigned char) pow( 2.0, (double)scale); CImg<float> m(1,1,2*res +1);m.fill(0); m(0,0,ct) = 6.0; m(0,0,ct-d1) = m(0,0,ct+d1) =4.0; m(0,0,ct-d2) = m(0,0,ct+d2) =1.0; m /= 16.0; return m;}/*------------------ Main procedure ----------------*/int main(int argc,char **argv) { cimg_usage("Perform an 'a trous' wavelet transform (using a cubic spline) on an image or on a video sequence.\n" "This wavelet transform is undecimated and produces 2 images/videos at each scale. For an example of\n" "decomposition on a video, try -i img/trees.inr (sequence from the MIT).\n" "\t(Type -h for help)"); // Read command line parameters const char *name_i = cimg_option("-i","img/lena.pgm","Input image or video"), *name_o = cimg_option("-o","","Name of the multiscale analysis output"), *axe_dec = cimg_option("-axe",(char*)NULL,"Perform the multiscale decomposition in just one direction ('x', 'y' or 't')"); const unsigned int s = cimg_option("-s",3,"Scale of decomposition"); const bool help = cimg_option("-h",false,"Display Help"); if(help) exit(0); // Initialize Image Data cout << " - Load image sequence " << name_i << "...\n"; const CImg<float> texture_in(name_i); CImg<float> mask_conv_x, mask_conv_y, mask_conv_t; CImgList<float> res(s, texture_in.dimx(),texture_in.dimy(),texture_in.dimz()); CImgList<float> wav(s,texture_in.dimx(), texture_in.dimy(), texture_in.dimz()); cimglist_for(res,l) { res(l).fill(0.0); wav(l).fill(0.0);} unsigned int i; if (!axe_dec){ // Perform the multiscale decomposition in all directions for(i=0;i<s;i++){ cout << " - Performing scale "<< i+1 <<" ... \n"; if(i==0){ res(i) = texture_in;} else { res(i) = res(i-1);} mask_conv_x = mask_x(i+1); res(i) = res(i).get_convolve(mask_conv_x); mask_conv_y = mask_y(i+1); res(i) = res(i).get_convolve(mask_conv_y); mask_conv_t = mask_t(i+1); res(i) = res(i).get_convolve(mask_conv_t); if(i==0){wav(i) = texture_in - res(i);} // res(0) and wav(0) are the 1st scale of decompostion else {wav(i) = res(i-1) - res(i);} } } if (axe_dec) { // Perform the multiscale decomposition in just one direction char c; c = cimg::uncase(axe_dec[0]); fprintf(stderr," - Decompose the image along axe '%c'\n",c); fflush(stdout); switch(c) { case 'x': { for(i=0;i<s;i++){ cout << " - Performing scale "<< i+1 <<" ... \n"; if(i==0){ res(i) = texture_in;} else { res(i) = res(i-1);} mask_conv_x = mask_x(i+1); res(i) = res(i).get_convolve(mask_conv_x); if(i==0){wav(i) = texture_in - res(i);} else {wav(i) = res(i-1) - res(i);}}} break; case 'y': { for(i=0;i<s;i++){ cout << " - Performing scale "<< i+1 <<" ... \n"; if(i==0){ res(i) = texture_in;} else { res(i) = res(i-1);} mask_conv_y = mask_y(i+1); res(i) = res(i).get_convolve(mask_conv_y); if(i==0){wav(i) = texture_in - res(i);} else {wav(i) = res(i-1) - res(i);}}} break; case 't': { for(i=0;i<s;i++){ cout << " - Performing scale "<< i+1 <<" ... \n"; if(i==0){ res(i) = texture_in;} else { res(i) = res(i-1);} mask_conv_t = mask_t(i+1); res(i) = res(i).get_convolve(mask_conv_t); if(i==0){wav(i) = texture_in - res(i);} else {wav(i) = res(i-1) - res(i);}}} break; default: throw CImgException("Error, unknow decompostion axe '%c', try 'x', 'y' or 't'",c); } fputc('\n',stderr); } if (*name_o){ // Save the Multi-Scale Analysis cout << " - Saving of all output sequences: "<< name_o <<" in the msa/ directory... \n"; int count = 1; // res0 = original image char filename[256] = "", filename_wav[256] = ""; char STmp[3] = ""; system("mkdir msa"); for(i=0;i<s;i++){ strcpy( filename, "msa/res" ); strcpy( filename_wav, "msa/wav" ); if( count < 10 ) { strcat( filename, "0" );strcat( filename_wav, "0" );} sprintf( STmp, "%d_", count ); strcat( filename, STmp ); strcat( filename_wav, STmp ); strcat( filename,name_o);strcat( filename_wav,name_o); res(i).save(filename); wav(i).save(filename_wav); count++; } } // Result visualization const float value = 255; for(i=0;i<s;i++) { res[i].normalize(0,255).draw_text(2,2,&value,0,11,1,"Scale %d",i); wav[i].normalize(0,255).draw_text(2,2,&value,0,11,1,"Scale %d",i); } CImgDisplay disp(res,"Approximations levels by increasing scale",0); CImgDisplay disp2(wav,"Wavelet coefficients by increasing scale",0); while ( !disp.is_closed && disp.key!=cimg::keyQ && disp.key!=cimg::keyESC && !disp2.is_closed && disp2.key!=cimg::keyQ && disp2.key!=cimg::keyESC ) { if (disp.is_resized) disp.resize().display(res); if (disp2.is_resized) disp2.resize().display(wav); CImgDisplay::wait(disp,disp2); } return 0;}
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -