亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? tyt03fi.htm

?? 快速學習TCP/IP協議
?? HTM
?? 第 1 頁 / 共 5 頁
字號:
<HTML>

<HEAD>

<TITLE>tyt03fi.htm</TITLE>

<LINK REL="ToC" HREF="index.htm" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/index.htm">

<LINK REL="Index" HREF="tppmsgs/msgs0.htm#3" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/htindex.htm">

<LINK REL="Next" HREF="tyt04fi.htm" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/tyt04fi.htm">

<LINK REL="Previous" HREF="tyt02fi.htm" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/tyt02fi.htm"></HEAD>

<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF" VLINK="#800080"><A ID="I0" NAME="I0"></A>

<P><P ALIGN=CENTER>

<A HREF="tyt02fi.htm" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/tyt02fi.htm" TARGET="_self"><IMG SRC="blanprev.gif" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/blanprev.gif" WIDTH = 37 HEIGHT = 37 BORDER = 0 ALT="Previous Page"></A>

<A HREF="index.htm" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/index.htm" TARGET="_self"><IMG SRC="blantoc.gif" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/blantoc.gif" WIDTH = 37 HEIGHT = 37 BORDER = 0 ALT="TOC"></A>

<A HREF="tyt04fi.htm" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/tyt04fi.htm" TARGET="_self"><IMG SRC="blannext.gif" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/blannext.gif" WIDTH = 37 HEIGHT = 37 BORDER = 0 ALT="Next Page"></A>


<HR ALIGN=CENTER>

<P>

<UL>

<UL>

<UL>

<LI>

<A HREF="#E68E28" >Internet Protocol</A></LI>

<UL>

<LI>

<A HREF="#E69E51" >The Internet Protocol Datagram Header</A></LI>

<UL>

<LI>

<A HREF="#E70E7" >Version Number</A></LI>

<LI>

<A HREF="#E70E8" >Header Length</A></LI>

<LI>

<A HREF="#E70E9" >Type of Service</A></LI>

<LI>

<A HREF="#E70E10" >Datagram Length (or Packet Length) </A></LI>

<LI>

<A HREF="#E70E11" >Identification</A></LI>

<LI>

<A HREF="#E70E12" >Flags</A></LI>

<LI>

<A HREF="#E70E13" >Fragment Offset</A></LI>

<LI>

<A HREF="#E70E14" >Time to Live (TTL)</A></LI>

<LI>

<A HREF="#E70E15" >Transport Protocol</A></LI>

<LI>

<A HREF="#E70E16" >Header Checksum</A></LI>

<LI>

<A HREF="#E70E17" >Sending Address and Destination Address</A></LI>

<LI>

<A HREF="#E70E18" >Options</A></LI>

<LI>

<A HREF="#E70E19" >Padding</A></LI></UL>

<LI>

<A HREF="#E69E52" >A Datagram's Life</A></LI></UL>

<LI>

<A HREF="#E68E29" >Internet Control Message Protocol (ICMP)</A></LI>

<LI>

<A HREF="#E68E30" >IPng: IP Version 6</A></LI>

<UL>

<LI>

<A HREF="#E69E53" >IPng Datagram</A></LI>

<UL>

<LI>

<A HREF="#E70E20" >Priority Classification</A></LI>

<LI>

<A HREF="#E70E21" >Flow Labels</A></LI></UL>

<LI>

<A HREF="#E69E54" >128-Bit IP Addresses</A></LI>

<LI>

<A HREF="#E69E55" >IP Extension Headers</A></LI>

<UL>

<LI>

<A HREF="#E70E22" >Hop-by-Hop Headers</A></LI>

<LI>

<A HREF="#E70E23" >Routing Headers</A></LI>

<LI>

<A HREF="#E70E24" >Fragment Headers</A></LI>

<LI>

<A HREF="#E70E25" >Authentication Headers</A></LI></UL></UL>

<LI>

<A HREF="#E68E31" >Internet Protocol Support in Different Environments</A></LI>

<UL>

<LI>

<A HREF="#E69E56" >MS-DOS</A></LI>

<LI>

<A HREF="#E69E57" >Microsoft Windows</A></LI>

<LI>

<A HREF="#E69E58" >Windows NT</A></LI>

<LI>

<A HREF="#E69E59" >OS/2</A></LI>

<LI>

<A HREF="#E69E60" >Macintosh</A></LI>

<LI>

<A HREF="#E69E61" >DEC</A></LI>

<LI>

<A HREF="#E69E62" >IBM's SNA</A></LI>

<LI>

<A HREF="#E69E63" >Local Area Networks</A></LI></UL>

<LI>

<A HREF="#E68E32" >Summary</A></LI>

<LI>

<A HREF="#E68E33" >Q&amp;A</A></LI>

<LI>

<A HREF="#E68E34" >Quiz</A></LI></UL></UL></UL>

<HR ALIGN=CENTER>

<A ID="E66E3" NAME="E66E3"></A>

<H1 ALIGN=CENTER>

<CENTER>

<FONT SIZE=6 COLOR="#FF0000"><B>&#151; 3 &#151;</B>

<BR><B>The Internet Protocol (IP)</B></FONT></CENTER></H1>

<BR>

<P>Yesterday I looked at the history of TCP/IP and the Internet in some detail. Today I move on to the first of the two important protocol elements of TCP/IP: the Internet Protocol, the &quot;IP&quot; part of TCP/IP. A good understanding of IP is necessary to continue on to TCP and UDP, because the IP is the component that handles the movement of datagrams across a network. Knowing how a datagram must be assembled and how it is moved through the networks helps you understand how the higher-level layers work with IP. For almost all protocols in the TCP/IP family, IP is the essential element that packages data and ensures that it is sent to its destination.

<BR>

<P>This chapter contains, unfortunately, even more detail on headers, protocols, and messaging than you saw in the last couple of days. This level of information is necessary in order for you to deal with understanding the applications and their interaction with IP, as well as troubleshooting the system. Although I don't go into exhaustive detail, there is enough here that you can refer back to this chapter whenever needed.

<BR>

<P>As with many of the subjects I look at in this book, don't assume that this chapter covers everything there is to know about IP. There are many books written on IP alone, going into each facet of the protocol and its functionality. Luckily, most of the details are transparent to you, and there is little advantage gained in knowing it. For that reason, I simplify the subject a little, still providing enough detail for you to see how IP works and what it does.

<BR>

<BR>

<A ID="E68E28" NAME="E68E28"></A>

<H3 ALIGN=CENTER>

<CENTER>

<FONT SIZE=5 COLOR="#FF0000"><B>Internet Protocol</B></FONT></CENTER></H3>

<BR>

<P>The Internet Protocol (IP) is a primary protocol of the OSI model, as well as an integral part of TCP/IP (as the name suggests). Although the word &quot;Internet&quot; appears in the protocol's name, it is not restricted to use with the Internet. It is true that all machines on the Internet can use or understand IP, but IP can also be used on dedicated networks that have no relation to the Internet at all. IP defines a protocol, not a connection. Indeed, IP is a very good choice for any network that needs an efficient protocol for machine-to-machine communications, although it faces some competition from protocols like Novell NetWare's IPX on small to medium local area networks that use NetWare as a PC server operating system.

<BR>

<P>What does IP do? Its main tasks are addressing of datagrams of information between computers and managing the fragmentation process of these datagrams. The protocol has a formal definition of the layout of a datagram of information and the formation of a header composed of information about the datagram. IP is responsible for the routing of a datagram, determining where it will be sent, and devising alternate routes in case of problems.

<BR>

<P>Another important aspect of IP's purpose has to do with unreliable delivery of a datagram. Unreliable in the IP sense means that the delivery of the datagram is not guaranteed, because it can get delayed, misrouted, or mangled in the breakdown and reassembly of message fragments. IP has nothing to do with flow control or reliability: there is no inherent capability to verify that a sent message is correctly received. IP does not have a checksum for the data contents of a datagram, only for the header information. The verification and flow control tasks are left to other components in the layer model. (For that matter, IP doesn't even properly handle the forwarding of datagrams. IP can make a guess as to the best routing to move a datagram to the next node along a path, but it does not inherently verify that the chosen path is the fastest or most efficient route.) Part of the IP system defines how gateways manage datagrams, how and when they should produce error messages, and how to recover from problems that might arise.

<BR>

<P>In the first chapter, you saw how data can be broken into smaller sections for transmission and then reassembled at another location, a process called fragmentation and reassembly. IP provides for a maximum packet size of 65,535 bytes, which is much larger than most networks can handle, hence the need for fragmentation. IP has the capability to automatically divide a datagram of information into smaller datagrams if necessary, using the principles you saw in Day 1.

<BR>

<P>When the first datagram of a larger message that has been divided into fragments arrives at the destination, a <I>reassembly timer</I> is started by the receiving machine's IP layer. If all the pieces of the entire datagram are not received when the timer reaches a predetermined value, all the datagrams that have been received are discarded. The receiving machine knows the order in which the pieces are to be reassembled because of a field in the IP header. One consequence of this process is that a fragmented message has a lower chance of arrival than an unfragmented message, which is why most applications try to avoid fragmentation whenever possible.

<BR>

<P>IP is connectionless, meaning that it doesn't worry about which nodes a datagram passes through along the path, or even at which machines the datagram starts and ends. This information is in the header, but the process of analyzing and passing on a datagram has nothing to do with IP analyzing the sending and receiving IP addresses. IP handles the addressing of a datagram with the full 32-bit Internet address, even though the transport protocol addresses use 8 bits. A new version of IP, called version 6 or IPng (IP Next Generation) can handle much larger headers, as you will see toward the end of today's material in the section titled &quot;IPng: IP Version 6.&quot;

<BR>

<BR>

<A ID="E69E51" NAME="E69E51"></A>

<H4 ALIGN=CENTER>

<CENTER>

<FONT SIZE=4 COLOR="#FF0000"><B>The Internet Protocol Datagram Header</B></FONT></CENTER></H4>

<BR>

<P>It is tempting to compare IP to a hardware network such as Ethernet because of the basic similarities in packaging information. Yesterday you saw how Ethernet assembles a frame by combining the application data with a header block containing address information. IP does the same, except the contents of the header are specific to IP. When Ethernet receives an IP-assembled datagram (which includes the IP header), it adds its header to the front to create a frame&#151;a process called <I>encapsulation.</I> One of the primary differences between the IP and Ethernet headers is that Ethernet's header contains the physical address of the destination machine, whereas the IP header contains the IP address. You might recall from yesterday's discussion that the translation between the two addresses is performed by the Address Resolution Protocol.

<BR>

<BLOCKQUOTE>

<BLOCKQUOTE>

<HR ALIGN=CENTER>

<BR>

<NOTE>

<IMG SRC="note.gif" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/note.gif" WIDTH = 75 HEIGHT = 46>Encapsulation is the process of adding something to the start (and sometimes the end) of data, just as a pill capsule holds the medicinal contents. The added header and tail give details about the enclosed data.</NOTE>

<BR>

<HR ALIGN=CENTER>

</BLOCKQUOTE></BLOCKQUOTE>

<P>The datagram is the transfer unit used by IP, sometimes more specifically called an Internet datagram, or IP datagram. The specifications that define IP (as well as most of the other protocols and services in the TCP/IP family of protocols) define headers and tails in terms of words, where a word is 32 bits. Some operating systems use a different word length, although 32 bits per word is the more-often encountered value (some minicomputers and larger systems use 64 bits per word, for example). There are eight bits to a byte, so a 32-bit word is the same as four bytes on most systems.

<BR>

<P>The IP header is six 32-bit words in length (24 bytes total) when all the optional fields are included in the header. The shortest header allowed by IP uses five words (20 bytes total). To understand all the fields in the header, it is useful to remember that IP has no hardware dependence but must account for all versions of IP software it can encounter (providing full backward-compatibility with previous versions of IP). The IP header layout is shown schematically in Figure 3.1. The different fields in the IP header are examined in more detail in the following subsections.

<BR>

<P><B><A HREF="03tyt01.gif" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/03tyt01.gif">Figure 3.1. The IP header layout.</A></B>

<BR>

<BR>

<A ID="E70E7" NAME="E70E7"></A>

<H5 ALIGN=CENTER>

<CENTER>

<FONT SIZE=4 COLOR="#FF0000"><B>Version Number</B></FONT></CENTER></H5>

<BR>

<P>This is a 4-bit field that contains the IP version number the protocol software is using. The version number is required so that receiving IP software knows how to decode the rest of the header, which changes with each new release of the IP standards. The most widely used version is 4, although several systems are now testing version 6 (called IPng). The Internet and most LANs do not support IP version 6 at present.

<BR>

<P>Part of the protocol definition stipulates that the receiving software must first check the version number of incoming datagrams before proceeding to analyze the rest of the header and encapsulated data. If the software cannot handle the version used to build the datagram, the receiving machine's IP layer rejects the datagram and ignores the contents completely.

<BR>

<BR>

<A ID="E70E8" NAME="E70E8"></A>

<H5 ALIGN=CENTER>

<CENTER>

<FONT SIZE=4 COLOR="#FF0000"><B>Header Length</B></FONT></CENTER></H5>

<BR>

<P>This 4-bit field reflects the total length of the IP header built by the sending machine; it is specified in 32-bit words. The shortest header is five words (20 bytes), but the use of optional fields can increase the header size to its maximum of six words (24 bytes). To properly decode the header, IP must know when the header ends and the data begins, which is why this field is included. (There is no start-of-data marker to show where the data in the datagram begins. Instead, the header length is used to compute an offset from the start of the IP header to give the start of the data block.)

<BR>

<BR>

<A ID="E70E9" NAME="E70E9"></A>

<H5 ALIGN=CENTER>

<CENTER>

<FONT SIZE=4 COLOR="#FF0000"><B>Type of Service</B></FONT></CENTER></H5>

<BR>

<P>The 8-bit (1 byte) Service Type field instructs IP how to process the datagram properly. The field's 8 bits are read and assigned as shown in Figure 3.2, which shows the layout of the Service Type field inside the larger IP header shown in Figure 3.1. The first 3 bits indicate the datagram's precedence, with a value from 0 (normal) through 7 (network control). The higher the number, the more important the datagram and, in theory at least, the faster the datagram should be routed to its destination. In practice, though, most implementations of TCP/IP and practically all hardware that uses TCP/IP ignores this field, treating all datagrams with the same priority.

<BR>

<P><B><A HREF="03tyt02.gif" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/03tyt02.gif">Figure 3.2. The 8-bit Service Type field </B><B>layout.</A></B>

<BR>

<P>The next three bits are 1-bit flags that control the delay, throughput, and reliability of the datagram. If the bit is set to 0, the setting is normal. A bit set to 1 implies low delay, high throughput, and high reliability for the respective flags. The last two bits of the field are not used. Most of these bits are ignored by current IP implementations, and all datagrams are treated with the same delay, throughput, and reliability settings.

<BR>

<P>For most purposes, the values of all the bits in the Service Type field are set to 0 because differences in precedence, delay, throughput, and reliability between machines are virtually nonexistent unless a special network has been established. Although these flags would be useful in establishing the best routing method for a datagram, no currently available UNIX-based IP system bothers to evaluate the bits in these fields. (Although it is conceivable that the code could be modified for high security or high reliability networks.)

<BR>

<BR>

<A ID="E70E10" NAME="E70E10"></A>

<H5 ALIGN=CENTER>

<CENTER>

<FONT SIZE=4 COLOR="#FF0000"><B>Datagram Length (or Packet Length) </B></FONT></CENTER></H5>

<BR>

<P>This field gives the total length of the datagram, including the header, in bytes. The length of the data area itself can be computed by subtracting the header length from this value. The size of the total datagram length field is 16 bits, hence the 65,535 bytes maximum length of a datagram (including the header). This field is used to determine the length value to be passed to the transport protocol to set the total frame length.

<BR>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲成av人影院| 国产成人av在线影院| 免费高清成人在线| 97久久超碰精品国产| 91精品国产一区二区三区蜜臀| 久久久精品国产免费观看同学| 洋洋av久久久久久久一区| 精品在线视频一区| 欧美三级三级三级| 国产精品全国免费观看高清| 免费在线成人网| 欧美专区日韩专区| 国产精品女同一区二区三区| 精品一区二区影视| 欧美日韩高清不卡| 亚洲激情自拍偷拍| 本田岬高潮一区二区三区| 2022国产精品视频| 美女任你摸久久| 911精品国产一区二区在线| 亚洲女同女同女同女同女同69| 国产一区二区在线观看免费| 日韩视频免费观看高清在线视频| 亚洲国产一二三| 在线精品国精品国产尤物884a| 国产精品福利影院| 99天天综合性| 成人免费视频在线观看| 成人一区二区三区视频在线观看| 精品sm捆绑视频| 久久99久国产精品黄毛片色诱| 日韩一区二区三区免费观看| 日韩成人午夜精品| 91精品国产一区二区三区香蕉| 肉丝袜脚交视频一区二区| 欧美日本国产一区| 日韩av二区在线播放| 欧美精品一二三四| 日本不卡123| 欧美一区二区二区| 麻豆精品在线视频| 欧美mv日韩mv国产网站| 久久国产免费看| 久久亚洲私人国产精品va媚药| 久久91精品久久久久久秒播| 精品久久久影院| 精品一区二区三区免费视频| 欧美国产乱子伦 | 精品国产1区二区| 久久国内精品视频| 国产精品欧美久久久久一区二区| 99这里都是精品| 亚洲妇女屁股眼交7| 欧美成人精品二区三区99精品| 国产激情偷乱视频一区二区三区| 国产精品丝袜91| 在线视频国内一区二区| 青青草一区二区三区| 久久久久国产精品麻豆| 91免费视频网址| 亚洲第一福利一区| ww久久中文字幕| 色噜噜狠狠成人网p站| 午夜精品久久久久久久蜜桃app| 日韩视频在线永久播放| 成人晚上爱看视频| 亚洲午夜影视影院在线观看| 精品少妇一区二区三区日产乱码 | 国产精品美女久久久久久久| 在线视频一区二区三| 麻豆精品久久精品色综合| 欧美国产综合色视频| 欧美性做爰猛烈叫床潮| 九九久久精品视频| 一区二区三区欧美激情| 欧美xxx久久| 一本色道综合亚洲| 精品一区二区免费在线观看| 亚洲日本在线天堂| 日韩欧美国产一区在线观看| a美女胸又www黄视频久久| 视频一区中文字幕| 最新国产精品久久精品| 日韩一区二区三区电影 | 中文字幕免费一区| 欧美高清视频在线高清观看mv色露露十八 | 在线成人午夜影院| 成人中文字幕合集| 国产精品99久久久| 亚洲曰韩产成在线| 中文字幕第一区二区| 欧美一区二区三区四区高清| 色哟哟国产精品免费观看| 精品一区二区影视| 亚洲成av人片一区二区梦乃| 最新高清无码专区| 国产亚洲1区2区3区| 欧美一区二区三区视频在线| 成人禁用看黄a在线| 九色porny丨国产精品| 五月婷婷久久丁香| 亚洲成人一区在线| 一区二区三区不卡在线观看 | 欧美韩国日本综合| 久久亚洲精品国产精品紫薇| 91精品国产综合久久久久久| 欧美亚州韩日在线看免费版国语版| 国产成人av电影在线观看| 美女视频黄 久久| 免费成人美女在线观看| 亚洲午夜av在线| 亚洲国产综合色| 亚洲大片免费看| 亚洲国产日产av| 一个色在线综合| 亚洲制服丝袜av| 亚洲国产成人91porn| 一个色妞综合视频在线观看| 依依成人综合视频| 亚洲一区av在线| 亚洲1区2区3区4区| 免费人成精品欧美精品| 男男成人高潮片免费网站| 理论片日本一区| 国内精品国产成人| 国产在线一区二区| 国产乱码精品一区二区三区忘忧草 | 欧美日韩国产高清一区二区| 欧美裸体bbwbbwbbw| 3d动漫精品啪啪1区2区免费| 欧美一级黄色录像| www久久久久| 中文字幕欧美一区| 亚洲图片欧美视频| 免费成人av在线播放| 国产风韵犹存在线视精品| 99re成人在线| 欧美视频一区二区| 精品免费视频.| 国产精品美女久久久久aⅴ| 亚洲精品水蜜桃| 日本不卡一区二区三区高清视频| 蜜桃av一区二区| 波多野结衣的一区二区三区| 欧美亚洲综合另类| 精品sm捆绑视频| 亚洲乱码国产乱码精品精小说| 图片区小说区国产精品视频| 国产一区在线看| 91在线小视频| 欧美一区二区人人喊爽| 国产精品天美传媒| 天天综合天天综合色| 国产精品性做久久久久久| 色哟哟精品一区| 久久久亚洲午夜电影| 一区二区三区高清在线| 国产麻豆91精品| 在线精品视频小说1| 久久蜜臀中文字幕| 亚洲一区二区三区美女| 韩国av一区二区三区四区| 色综合av在线| 国产色婷婷亚洲99精品小说| 亚洲18女电影在线观看| 成人激情免费电影网址| 91精品国产综合久久久久久久 | 亚洲第一成人在线| 国产精品1区2区| 欧美一区二区视频网站| 一级特黄大欧美久久久| 精品一区二区三区免费毛片爱| 欧洲激情一区二区| 亚洲欧洲成人精品av97| 九九国产精品视频| 制服.丝袜.亚洲.中文.综合| 一区二区中文视频| 国产一区在线精品| 日韩一级黄色大片| 亚洲成人免费在线| 色婷婷久久综合| 国产精品每日更新在线播放网址| 日本不卡视频一二三区| 在线精品亚洲一区二区不卡| 国产精品美日韩| 国产精品中文字幕一区二区三区| 7878成人国产在线观看| 亚洲韩国一区二区三区| 91福利在线播放| 亚洲激情在线播放| 色老头久久综合| 亚洲日本va午夜在线电影| 成人av网站在线观看| 日本一区二区三区高清不卡| 精品一区二区免费| 日韩欧美激情在线| 蜜桃视频第一区免费观看| 欧美一级高清片| 美女一区二区在线观看| 欧美电影免费观看高清完整版在 |