?? intersect.m
字號:
function CON = intersect(CONfeas,CONadd,clean_up_flag)
% Compute the intersection of two linear constraint sets
%
% Syntax:
% "C = intersect(a,b,clean_up_flag)"
%
% Description:
% "intersect(a,b,clean_up_flag)" returns a linearcon object containing
% the intersection of "a" and "b". If no intersection exists,
% "intersect(a,b,clean_up_flag)" returns an empty linear constraint
% object. The value of "clean_up_flag" determines whether or not
% redundant constraints are removed from the returned linear constraint
% object; "clean_up_flag=1"--remove all redundant constraints,
% "clean_up_flag=0"--do nothing.
%
% Note:
% At most one equality constraint is allowed in "a", and if "b" has an
% equality constraint, it must be the same as the one present in "a".
%
% See Also:
% linearcon,isfeasible,and
global GLOBAL_APPROX_PARAM
global GLOBAL_OPTIM_PAR
epsilon = GLOBAL_APPROX_PARAM.poly_epsilon;
hyperplane_tol = GLOBAL_APPROX_PARAM.poly_hyperplane_tol;
CON = linearcon;
if isempty(CONfeas) | isempty(CONadd)
return
end
if (length(CONfeas.dE) > 1) | (length(CONadd.dE) > 1)
fprintf('\007intersect: Invalid constraints given, more than 1 equality found\n')
return
end
if (length(CONfeas.dE) == 0) & (length(CONadd.dE) == 1)
fprintf('\007intersect: Invalid constraints given, additional equality constraints\n')
return
end
% If an equality constraint is found in both sets of constraints,
% check if they're the same constraint, if not return an empty
% cell array
if (length(CONfeas.dE) == 1) & (length(CONadd.dE) == 1)
MATRIX = [CONfeas.CE CONfeas.dE
CONadd.CE CONadd.dE];
if rank(MATRIX,hyperplane_tol) > 1
% fprintf('intersect: Patches w/ different eq constraints found\n')
return
else
CONadd.CE = []; CONadd.dE = [];
end
end
% Start with the feasible constraints
CE = CONfeas.CE; dE = CONfeas.dE;
CI = CONfeas.CI; dI = CONfeas.dI;
% Find out if each new inequality constraint is feasible
CIadd = CONadd.CI; dIadd = CONadd.dI;
for k = 1:size(CIadd,1)
cIk = CIadd(k,:);
dIk = dIadd(k);
if is_new_ineq(CONfeas,cIk,dIk)
xmin = linprog(cIk',CI,dI,CE,dE,[],[],[],GLOBAL_OPTIM_PAR);
% xmin = lp(cIk',[CE; CI],[dE; dI],[],[],[],size(CE,1));
fmin = cIk*xmin;
isfeasible = (fmin < dIk-epsilon);
if isfeasible
CI = [CI; cIk];
dI = [dI; dIk];
else
return
end
end
end
CON = linearcon(CE,dE,CI,dI);
if clean_up_flag
CON = clean_up(CON);
end
return
% ----------------------------------------------------------------------------
function new = is_new_ineq(CONfeas,c,d)
% Check if the given constraint cTx <= d
% is already in the feasible constraint CONfeas
global GLOBAL_APPROX_PARAM
hyperplane_tol = GLOBAL_APPROX_PARAM.poly_hyperplane_tol;
% First search the equality constraints
CE = CONfeas.CE; dE = CONfeas.dE;
new = 1;
for k = 1:length(dE)
MATRIX = [CE(k,:) dE(k); c d];
if (rank(MATRIX,hyperplane_tol) < 2)
new = 0;
break;
end
end
if new
% Now search the inequality constraints
CI = CONfeas.CI; dI = CONfeas.dI;
for k = 1:length(dI)
MATRIX = [CI(k,:) dI(k); c d];
if (rank(MATRIX,hyperplane_tol) < 2) & (CI(k,:)*c' > 0)
new = 0;
break;
end
end
end
return
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -