亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? demgltst.m

?? 這個是基于matlab的信號處理類的高階譜工具箱
?? M
字號:
%DEMGLTST HOSA Toolbox Demo:  Tests for Gaussianity and Linearity 

echo off 

% A. Swami April 15, 1993
% Copyright (c) 1991-2001 by United Signals & Systems, Inc. 
%       $Revision: 1.5 $

%     RESTRICTED RIGHTS LEGEND
% Use, duplication, or disclosure by the Government is subject to
% restrictions as set forth in subparagraph (c) (1) (ii) of the 
% Rights in Technical Data and Computer Software clause of DFARS
% 252.227-7013. 
% Manufacturer: United Signals & Systems, Inc., P.O. Box 2374, 
% Culver City, California 90231. 
%
%  This material may be reproduced by or for the U.S. Government pursuant 
%  to the copyright license under the clause at DFARS 252.227-7013. 


clear, clc, 
echo on 

%             TESTING for GAUSSIANITY and LINEARITY 
%
% How do we know whether `real' data are non-Gaussian or non-linear? 
% 
% The basic idea is that if the signal is Gaussian, its third (fourth ...)
% order cumulants must be identically zero.  In practice, sample estimates
% of cumulants will not be exactly zero: so, we need a test
% to determine whether or not estimated quantities are significantly 
% different from zero in a statistical sense. 
% For a linear non-Gaussian process, we saw that the absolute value
% of the bicoherence is a constant.   Again, sample estimates of the 
% bicoherence will not be constant, and we need a test to
% determine whether the non-constancy is statistically significant. 

% The HOSA Toolbox offers the routine GLSTAT to test whether a given signal
% is non-Gaussian, and if so, whether it is also linear. 

% Hit any key to continue
pause
clc 

% Decision Statistics for Linearity and Gaussianity Tests 
%
load gldat 
% In this routine, the bispectrum of the process is estimated and 
% smoothed;   tests are then conducted to see whether the bispectral
% values are significantly different from zero.   The basic idea is that
% estimates of the bispectrum are asymptotically complex normal;  hence, the
% energy in the bispectrum is chi-squared distributed;  the number of 
% degrees of freedom depend upon the FFT length and the smoothing window. 
%
% In the Gaussianity test, 
% The null hypothesis is that the data have zero bispectrum ("Gaussian") 
% The computed probability of false alarm (PFA) value is the probability that 
% the value of the chi-squared r.v. with the indicated degrees of freedom will
% exceed the computed test statistic. 
% The PFA value indicates the false alarm probability in accepting the 
% alternate hypothesis, that the data have non-zero bispectrum. 
% Usually, the null hypothesis is accepted if PFA is greater than 0.05 
%    (i.e., it is risky to accept the alternate hypothesis). 

% Hit any key to continue
pause

% In the Linearity test, the inter-quartile range of the estimated
% bicoherence is computed;  a quantity, 'lambda' proportional to the
% mean value of the bicoherence is also computed;  the theoretical
% inter-quartile range of a chi-squared r.v. with two degrees of freedom
% and non-centrality parameter 'lambda' is then computed. 
% The linearity hypothesis should be rejected if the estimated and
% theoretical inter-quartile ranges are very different from one another.

% Hit any key to continue
pause 

% We will use a smoothing parameter (cparm) value of 0.51 and an FFT length
% of 256 in the following examples.  Each of the sequences to be tested 
% has 512 samples. 

      cparm = 0.51;  nfft = 256; 

% hit any key to continue 
pause 
clc

% We will apply the test to an i.i.d. Gaussian sequence, g. 

    [sg,sl] = glstat(g, cparm, nfft); 

% Since the PFA is high, we accept the null (Gaussian) hypothesis; 
% the linearity test is also based on the bispectrum; if the bispectrum is
% zero, the bicoherence will be a constant, equal to zero, and we cannot
% conclude, based on the bispectrum, whether or not the data are linear; 
% hence, the linearity test is meaningless in this case. 

% hit any key to continue  ............... 
pause 

% We will apply the test to an i.i.d. sequence, u, with uniform p.d.f.

    [sg,sl] = glstat(u, cparm, nfft); 

% Since the PFA is high, we accept the null (zero bispectrum) hypothesis;
% the linearity test is also based on the bispectrum; if the bispectrum is
% zero, the bicoherence will be a constant, equal to zero, and we cannot
% conclude, based on the bispectrum, whether or not the data are linear; 
% hence, the linearity test is meaningless in this case. 

% hit any key to continue  ............... 
pause 

% We will apply the test to an i.i.d. exponential sequence, e 

    [sg,sl] = glstat(e, cparm, nfft); 

% Since the PFA is very small, we accept the alternate hypothesis, 
%     i.e., the data are accepted as being non-Gaussian. 
% The linearity test is meaningful in this case. 
% The estimated and theoretical inter-quartile ranges are close to each other.
% Hence, we accept the linearity test as well. 

% hit any key to continue  ............... 
pause 

%  Sequence x was obtained by passing e through a linear filter. 
%  Since sequence  e  was accepted as non-Gaussian and linear, 
%     we expect x to be accepted as non-Gaussian and linear as well. 
%  Let us apply the tests to the sequence e. 

    [sg,sl] = glstat(x, cparm, nfft); 

% Since the PFA is very small, we accept the alternate hypothesis
%     i.e., the data are accepted as being non-Gaussian. 
% The linearity test is meaningful in this case. 
% The estimated and theoretical inter-quartile ranges are close to each other.
% Hence, we accept the linearity test as well. 

% hit any key to continue  ............... 
pause 

% Sequence z was obtained by passing the sequence x through a non-linearity, 
%   z = x.^3  
% Let us apply the tests to z 

     [sg,sl] = glstat(z, cparm, nfft); 

% Since the PFA is small, we accept the non-Gaussian hypothesis 
% Since the estimated and theoretical inter-quartile ranges are very 
% different, we cannot accept the linearity hypothesis. 

% hit any key to continue  ............... 
pause 

% We will apply the test to an i.i.d. Laplacian sequence, l  

    [sg,sl] = glstat(l, cparm, nfft); 

% Since the PFA is high, we accept the null (zero bispectrum) hypothesis;
% the linearity test is also based on the bispectrum; if the bispectrum is
% zero, the bicoherence will be a constant, equal to zero, and we cannot
% conclude, based on the bispectrum, whether or not the data are linear; 
% hence, the linearity test is meaningless in this case. 

% Hit any key to return to the main menu .... 
pause 
echo off
clc

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩精品电影在线观看| 中文字幕+乱码+中文字幕一区| 不卡电影一区二区三区| 国产精品一区二区久久精品爱涩 | 欧美va亚洲va香蕉在线| 欧美精品久久99| 欧美日韩精品电影| 欧美电影一区二区| 91精品国产麻豆国产自产在线 | 狂野欧美性猛交blacked| 亚洲国产一区二区视频| 肉色丝袜一区二区| 毛片av一区二区| 国产福利一区二区三区| 99久久免费国产| 色哟哟一区二区三区| 欧美天堂一区二区三区| 欧美一级国产精品| 国产欧美一区二区在线观看| 中文字幕一区二区三区不卡 | 日韩美女在线视频| 国产亚洲欧美在线| ●精品国产综合乱码久久久久| 最近中文字幕一区二区三区| 亚洲成a人v欧美综合天堂下载| 免费看日韩精品| 成人毛片视频在线观看| 欧美在线不卡一区| 精品久久久久久久久久久久包黑料 | 国产麻豆9l精品三级站| 不卡一二三区首页| 欧美日韩中文字幕一区| 久久九九全国免费| 亚洲综合清纯丝袜自拍| 国内欧美视频一区二区| 91一区一区三区| 日韩欧美国产一区二区三区| 亚洲欧洲国产日韩| 九色综合狠狠综合久久| 欧美视频一区在线| 久久久www成人免费无遮挡大片 | 色婷婷精品久久二区二区蜜臀av| 欧美精品乱码久久久久久| 欧美国产1区2区| 日韩av一二三| 色欧美乱欧美15图片| 久久久久久一级片| 性做久久久久久久久| av在线不卡免费看| 精品国产91洋老外米糕| 亚洲成人精品影院| av激情综合网| 欧美国产精品中文字幕| 麻豆精品在线观看| 欧美猛男gaygay网站| 亚洲美女偷拍久久| 国产丶欧美丶日本不卡视频| 日韩一级免费一区| 午夜成人免费电影| 欧美在线|欧美| 亚洲精品成a人| 91亚洲精品久久久蜜桃网站| 久久久久久99精品| 久久99精品久久久久久国产越南| 欧美日韩中文精品| 亚洲va中文字幕| 在线视频国内自拍亚洲视频| 亚洲欧美日韩在线| 99久久国产综合精品麻豆| 国产欧美日韩另类一区| 国产成人免费在线| 国产日韩欧美高清| 国产不卡视频在线观看| 久久久精品国产99久久精品芒果| 国产自产2019最新不卡| 久久综合色天天久久综合图片| 久久精品久久精品| www国产精品av| 国内精品在线播放| 久久这里只有精品视频网| 国产美女精品一区二区三区| 久久色成人在线| 国产91精品在线观看| 国产精品久久久久久久久快鸭 | 国产在线看一区| 精品伦理精品一区| 国产成人在线看| 国产精品美女一区二区在线观看| 成人午夜电影小说| 国产精品二三区| 在线看日本不卡| 午夜不卡av免费| 精品日韩一区二区三区| 国产成a人亚洲| 亚洲乱码精品一二三四区日韩在线| 91久久一区二区| 日韩vs国产vs欧美| 国产色一区二区| 色婷婷综合久久久久中文一区二区| 亚洲一区在线播放| 26uuu成人网一区二区三区| 成人免费视频播放| 午夜成人在线视频| 国产日韩欧美精品综合| 欧美影院午夜播放| 国产一区二区三区在线观看免费 | 欧美主播一区二区三区美女| 日韩电影免费在线| 欧美激情在线免费观看| 欧美视频一区二| 国产成人在线视频播放| 亚洲国产视频网站| 国产女同性恋一区二区| 欧美日韩一区三区| 欧美私人免费视频| 国内欧美视频一区二区| 亚洲国产精品久久艾草纯爱| 欧美sm极限捆绑bd| 欧美在线高清视频| 国产成人精品免费视频网站| 午夜视频在线观看一区| 国产精品福利电影一区二区三区四区| 欧美日韩另类国产亚洲欧美一级| 国产999精品久久久久久| 首页综合国产亚洲丝袜| 欧美激情一区二区三区四区| 日韩一级片在线观看| 欧美午夜精品久久久久久孕妇| 国产成人一级电影| 久久99精品国产.久久久久| 亚洲一区av在线| 亚洲欧美日韩国产综合| 中文字幕不卡三区| 欧美精品一区视频| 欧美精品少妇一区二区三区| 色呦呦国产精品| 97精品国产露脸对白| 成人福利在线看| 国产69精品久久99不卡| 精品一区二区影视| 久久精品国产99国产精品| 午夜电影久久久| 午夜精品在线视频一区| 亚洲国产精品久久不卡毛片| 亚洲一区二区三区四区在线| 亚洲精选一二三| 亚洲欧美一区二区三区国产精品 | 成人av影视在线观看| 国产一区 二区 三区一级| 久久av老司机精品网站导航| 日韩电影在线看| 久久aⅴ国产欧美74aaa| 韩国欧美国产一区| 国产一区二区不卡老阿姨| 久久国产乱子精品免费女| 免费成人深夜小野草| 久久精品国产精品亚洲红杏| 久久66热偷产精品| 国产高清一区日本| 成人av电影在线| 色偷偷成人一区二区三区91| 在线一区二区三区四区五区| 色婷婷精品大在线视频| 欧美日韩成人综合| 精品乱码亚洲一区二区不卡| 国产日本欧洲亚洲| 亚洲人123区| 日韩成人一区二区| 福利一区在线观看| 在线一区二区视频| 欧美一级爆毛片| 日本一区二区三区在线不卡| 最近中文字幕一区二区三区| 五月天网站亚洲| 国产精品一线二线三线精华| 96av麻豆蜜桃一区二区| 欧美日韩激情在线| 国产亚洲精品精华液| 亚洲欧美经典视频| 日韩激情一二三区| 国产99一区视频免费| 在线观看视频一区二区| 日韩欧美国产精品一区| 亚洲欧洲日韩av| 日本最新不卡在线| 波多野结衣一区二区三区| 欧美久久久久中文字幕| 国产清纯在线一区二区www| 亚洲综合色视频| 国产成人亚洲综合色影视| 欧美日韩在线一区二区| 久久亚洲综合色一区二区三区 | 日韩高清电影一区| 豆国产96在线|亚洲| 91精品在线麻豆| 国产精品毛片高清在线完整版| 视频一区在线视频| 91麻豆免费观看| 国产亚洲一区二区三区在线观看| 亚洲国产精品久久久久秋霞影院|