亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? dd1m.m

?? Kalman filter that can be simulated under windws
?? M
字號:
function [xhat_data,Smat]=dd1m(kalmfilex,kalmfiley,xbar,P0,q,r,...
                 u,y,timeidx,optpar)
% DD1M
%   This function performs a DD1-filtering; a state estimation for nonlinear 
%   systems that is based on first-order polynomial approximations of the 
%   nonlinear mappings. The approximations are derived by using a 
%   multidimensional extension of Stirling's interpolation formula.
%   The function is implemented to handle multiple observation streams.
%   The model of the nonlinear system must be specified in the form:
%               x(k+1) = f[x(k),u(k),v(k)]
%               y1(k)  = g1[x(k),w1(k)]
%                        :
%               yn(k)  = gn[x(k),wn(k)]
%   where 'x' is the state vector, 'u' is a possible input, and 'v' and 'w'
%   are (white) noise sources.
%
% Call
%   [xhat,Smat]=dd1m(xfile,yfile,x0,P0,q,r,u,y,tidx,optpar) 
%
% Input
%   xfile   - File containing the state equations.
%   yfunc   - Cell array specifying the names of the functions 
%             containing the output equations.
%   x0      - Initial state vector.
%   P0      - Initial covariance matrix (symmetric, nonnegative definite).
%   q       - Covariance matrices for process noise.
%   r       - Cell array containing the measurement noise cov. matrices. 
%   u       - Input signal. Dimension is [samples x inputs].
%             Use [] if there are no inputs.
%   y       - Cell array containing the output signals. 
%             Dimension of each stream is [observations x outputs-in-stream].
%   tidx    - Cell array containing vector with time stamps (in samples) 
%             for the observations in y.
%   optpar  - Data structure containing optional parameters:
%             .A:     State transition matrix.
%             .C:     Output sensitivity matrix (cell array).
%             .F:     Process noise coupling matrix.
%             .G:     Measurement noise coupling matrix (cell array).
%             .init : Initial parameters for 'xfile', 'yfile'
%                     (use an arbitrary format).
%
% Output
%   xhat    - State estimates. Dimension is [samples+1 x states].
%   Smat    - Matrix where each row contains elements of (the upper triangular
%             part of) the Cholesky factor of a covariance matrix. The 
%             dimension is [samples+1 x 0.5*states*(states+1)]. The individual
%             covariance matrices can later be extracted with SMAT2COV.
%
%  The user must write the two m-functions 'xfile' and 'yfile' containing the
%  state update and the output equation. The function containing the state
%  update should take three arguments:
%       function x=my_xfile(x,u,v)
%
%  while the function containing the output equation should take two
%  arguments:
%       function y=my_yfile(x,w)
%
%  In both cases, an initialization of constant parameters can be 
%  made using the parameter 'optpar.init'. This parameter is passed through
%  x if the functions are called with only one parameter.
%
%  Literature:
%     M. Norgaard, N.K. Poulsen, O. Ravn: "New Developments in State
%     Estimation for Nonlinear Systems", Automatica, (36:11), Nov. 2000,
%     pp. 1627-1638.
%
% Written by Magnus Norgaard
% LastEditDate: Nov. 9, 2001 

% >>>>>>>>>>>>>>>>>>>>>>>>>>>> INITIALIZATIONS <<<<<<<<<<<<<<<<<<<<<<<<<<<
h2    = 3;                 % Squared divided difference step
h     = sqrt(h2);          % Divided difference step
scal1 = 0.5/h;             % Scaling factor
nx    = size(P0,1); % # of states
nv    = size(q,1);  % # of process noise sources
if isempty(xbar),          % Set to x0=0 if not specified 
  xbar = zeros(nx,1);
elseif length(xbar)~=nx,
  error('Dimension mismatch between x0 and P0');
end
streams    = length(y);
if ~(iscell(kalmfiley) & iscell(r) & iscell(timeidx) & iscell(y))
  error('"yfunc", "r", "tidx", and "y" must be cell array');
elseif (streams~=length(r) | streams~=length(timeidx) | ...
                                 streams~=length(kalmfiley))
  error('"yfunc", "r", "tidx", and "y" must have same number of cells');
end
ny         = 0;                % Total number of observations
lastsample = 0;                % Number of sample containing last observation
idx1 = zeros(streams,1);       % Index to start of each stream in ybar
idx2 = zeros(streams,1);       % Index to end of each stream in ybar
for n=1:streams,               % Wrap information about observation stream 
  obs(n).yfunc = kalmfiley{n}; % into data structure
  obs(n).y     = y{n};
  obs(n).tidx  = timeidx{n};
  obs(n).ny    = size(obs(n).y,2);
  obs(n).nobs  = size(obs(n).y,1);
  [v,d]        = eig(r{n});
  obs(n).nw    = size(r{n},1);  
  obs(n).Sw    = real(v*sqrt(d)); % Square root of measurement noise cov.
  obs(n).hSw   = h*obs(n).Sw;
  obs(n).SyxSyw= zeros(obs(n).ny,nx+obs(n).nw);
  if (obs(n).nobs~=length(obs(n).tidx)),
    error('Dimension mismatch between y and tidx');
  end
  ny = ny + obs(n).ny;
  if obs(n).tidx(end)>lastsample,
     lastsample=obs(n).tidx(end);
  end
  idx1(n) = ny - obs(n).ny + 1;
  idx2(n) = ny;
  obs(n).Cflag=0;
  obs(n).Gflag=0;
end
if isempty(u),             % No inputs
  nu = 0; samples = lastsample; uk1 = [];
else
  [samples,nu] = size(u);  % # of samples and inputs
end
xhat_data = zeros(samples+1,nx); % Matrix for storing state estimates
Smat      = zeros(samples+1,0.5*nx*(nx+1)); % Matrix for storing cov. matrices
[I,J]     = find(triu(reshape(1:nx*nx,nx,nx))'); % Index to elem. in Sx
sidx      = sub2ind([nx nx],J,I); 
ybar      = zeros(ny,1);
yidx      = ones(streams,1);% Index into y-vectors 


% ----- Initialize state+output equations and linearization -----
if nargin<10,              % No optional parameters passed
   optpar = [];
end
if isfield(optpar,'init')  % Parameters for m-functions
   initpar = optpar.init;
else
   initpar = [];
end
vmean = zeros(nv,1);       % Mean of process noise
for n=1:streams,           % Mean of measurement noise
   obs(n).wmean = zeros(obs(n).nw,1);
end

[v,d] = eig(P0);           % Cholesky factor of initial state covariance
Sxbar = triag(real(v*sqrt(d)));
[v,d] = eig(q);            % Cholesky factor of process noise covariance
Sv    = real(v*sqrt(d));
hSv   = h*Sv;
SxxSxv = zeros(nx,nx+nv);  % Allocate compund matrix consisting of Sxx and Syv 
Aflag = 0; Fflag = 0;
if isfield(optpar,'A'),    % Deterministic dynamic model is linear
   A = optpar.A;
   if(size(A,1)~=nx | size(A,2)~=nx)
      error('"optpar.A" has the wrong dimension');
   end
   Aflag = 1;
end
if isfield(optpar,'F'),    % Linear process noise model in state equation
   F = optpar.F;
   if(size(F,1)~=nx | size(F,2)~=nv)
      error('"optpar.F" has the wrong dimension');
   end
   SxxSxv(:,nx+1:nx+nv) = F*Sv;
   Fflag = 1;
end

if isfield(optpar,'C'),    % Deterministic observation model is linear
   if ~iscell(optpar.C),
      error('"optpar.C" must be a cell array');
   elseif streams~=length(optpar.C),
      error('Number of cells in "optpar.C" is wrong');
   end
   for n=1:streams,
		if ~isempty(optpar.C{n})  % Observation model "n" is linear
         obs(n).Cflag = 1;
			obs(n).C = optpar.C{n};
		   if(size(obs(n).C,1)~=obs(n).ny | size(obs(n).C,2)~=nx)
				errstr=sprintf('optpar.C{%d} has the wrong dimension',n);
            error(errstr);
			end
      end
   end
end
if isfield(optpar,'G'),    % Linear observation noise model
   if ~iscell(optpar.G),
      error('"optpar.G" must be a cell array');
   elseif streams~=length(optpar.G),
      error('Number of cells in "optpar.G" is wrong');
   end
   for n=1:streams,
		if ~isempty(optpar.G{n})  % Observation model "n" is linear
         obs(n).Gflag = 1;
			obs(n).G = optpar.G{n};
		   if(size(obs(n).G,1)~=obs(n).ny | size(obs(n).G,2)~=obs(n).nw)
				errstr=sprintf('optpar.G{%d} has the wrong dimension',n);
            error(errstr);
			end
         obs(n).SyxSyw(:,nx+1:nx+obs(n).nw) = obs(n).G*obs(n).Sw;
		end
	end
end

feval(kalmfilex,initpar);       % Initialize state equation
for n=1:streams,
   feval(obs(n).yfunc,initpar); % Initialize output equations
end
counter = 0;               % Counts the progress of the filtering
waithandle=waitbar(0,'Filtering in progress');  % Initialize waitbar


% >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FILTERING <<<<<<<<<<<<<<<<<<<<<<<<<<<<<
for k=0:samples,

  % --- Measurement update (a posteriori update) ---
  for n=1:streams,
    ybar(idx1(n):idx2(n)) = feval(obs(n).yfunc,xbar,obs(n).wmean);
    if (k<=obs(n).tidx(end) & obs(n).tidx(yidx(n))==k),
		 if obs(n).Cflag,
          obs(n).SyxSyw(:,1:nx) = obs(n).C*Sxbar;
       else 
          for kx=1:nx,
             syp = feval(obs(n).yfunc,xbar+h*Sxbar(:,kx),obs(n).wmean);
             sym = feval(obs(n).yfunc,xbar-h*Sxbar(:,kx),obs(n).wmean);
             obs(n).SyxSyw(:,kx) = scal1*(syp-sym);
          end
		 end
		 if ~obs(n).Gflag
          kw2=nx;
          for kw=1:obs(n).nw,
             swp = feval(obs(n).yfunc,xbar,obs(n).hSw(:,kw));
             swm = feval(obs(n).yfunc,xbar,-obs(n).hSw(:,kw));
             obs(n).SyxSyw(:,kw2+kw) = scal1*(swp-swm);
          end
		 end
      
      % Cholesky factor of a'posteriori output estimation error covariance
      Sy   = triag([obs(n).SyxSyw]);
      
      % Kalman gain
      K    = (Sxbar*obs(n).SyxSyw(:,1:nx)')/(Sy*Sy');
      
      % State estimate
      xbar = xbar + K*[obs(n).y(yidx(n),:)'-ybar(idx1(n):idx2(n))];
            
      % Cholesky factor of a'posteriori estimation error covariance
      Sxbar = triag([Sxbar-K*obs(n).SyxSyw(:,1:nx) K*obs(n).SyxSyw(:,nx+1:end)]);
      yidx(n) = yidx(n) + 1;              % Update index in time vector
    end
  end
  xhat = xbar;
  Sx   = Sxbar;


  % --- Time update (a'priori update) of state and covariance ---
  if k<samples,
    if nu>0 uk1 = u(k+1,:)'; end
    xbar=feval(kalmfilex,xhat,uk1,vmean);
    if Aflag,
        SxxSxv(:,1:nx) = A*Sx;
    else
       for kx=1:nx,
          sxp = feval(kalmfilex,xhat+h*Sx(:,kx),uk1,vmean);
          sxm = feval(kalmfilex,xhat-h*Sx(:,kx),uk1,vmean);
          SxxSxv(:,kx) = scal1*(sxp-sxm);
       end
    end
    if ~Fflag, 
       kv2=nx;
       for kv=1:nv,
          svp = feval(kalmfilex,xhat,uk1,hSv(:,kv));
          svm = feval(kalmfilex,xhat,uk1,-hSv(:,kv));
          SxxSxv(:,kv+kv2) = scal1*(svp-svm);
       end
    end

    % Cholesky factor of a'priori estimation error covariance
    Sxbar = triag(SxxSxv);
  end
  
  
  % --- Store results ---
  xhat_data(k+1,:) = xhat';
  Smat(k+1,:)      = Sx(sidx)';
    
  % --- How much longer? ---
  if (counter+0.01<= k/samples),
     counter = k/samples;
     waitbar(k/samples,waithandle);
  end
end
close(waithandle);

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品伦一区| 精品乱码亚洲一区二区不卡| 亚洲欧美偷拍卡通变态| 91丨九色丨尤物| 亚洲一区二区中文在线| 欧美精品99久久久**| 美国十次了思思久久精品导航| 欧美va亚洲va在线观看蝴蝶网| 国产盗摄女厕一区二区三区| 国产喷白浆一区二区三区| 亚洲欧美日韩在线| 欧美日韩一区二区三区四区五区| 香蕉影视欧美成人| 久久久九九九九| 日韩欧美第一区| 狂野欧美性猛交blacked| 欧美日韩视频不卡| 国产在线精品免费| 伊人色综合久久天天| 在线不卡a资源高清| 成人一区二区三区在线观看| 亚洲欧美另类图片小说| 欧美一级在线观看| 丰满少妇在线播放bd日韩电影| 亚洲一区二区三区四区的| 日韩精品一区二| 在线观看视频欧美| 国产一区不卡精品| 亚洲国产欧美日韩另类综合| 久久久99精品久久| 欧美日韩亚洲综合在线| 成人激情校园春色| 奇米影视一区二区三区小说| 亚洲免费av在线| 2020国产成人综合网| 91免费小视频| 国产精品1区2区| 五月综合激情婷婷六月色窝| 国产精品久久久久久久第一福利| 日韩视频一区二区在线观看| 色94色欧美sute亚洲线路二| 国产乱人伦偷精品视频免下载| 婷婷激情综合网| 18成人在线观看| 久久免费看少妇高潮| 777久久久精品| 91久久精品日日躁夜夜躁欧美| 国产成人免费视频网站高清观看视频| 日本色综合中文字幕| 一区av在线播放| 日韩伦理av电影| 国产欧美1区2区3区| 日韩欧美中文字幕一区| 欧美亚洲一区二区在线观看| 99精品视频在线观看免费| 国产黄色精品视频| 国产在线观看一区二区| 首页国产欧美久久| 亚洲自拍偷拍网站| 亚洲综合区在线| 亚洲人午夜精品天堂一二香蕉| 中文字幕免费不卡在线| 久久精品人人做| 久久亚洲影视婷婷| 久久久久久久久久久电影| 欧美精品一区二区三区蜜桃视频| 日韩一区二区视频| 日韩欧美一区在线| 精品国产乱码久久久久久久久| 欧美一区二区三区公司| 欧美一级在线视频| 精品国产免费久久| 久久香蕉国产线看观看99| 久久久久久麻豆| 欧美激情一区二区三区蜜桃视频| 国产欧美日韩视频在线观看| 国产亚洲欧美日韩日本| 国产精品久久久久久户外露出| 中文字幕日韩av资源站| 亚洲欧洲精品一区二区三区| 亚洲欧美激情一区二区| 亚洲六月丁香色婷婷综合久久| 亚洲免费色视频| 天天色天天操综合| 精品在线播放免费| 国产成人精品三级| 99九九99九九九视频精品| 91高清视频免费看| 51精品国自产在线| 2023国产精品自拍| 亚洲精品美国一| 日韩国产成人精品| 国产伦精品一区二区三区视频青涩 | 欧美夫妻性生活| 日韩欧美激情四射| 国产精品福利av| 亚洲一区二区三区四区在线观看 | 一区二区在线观看视频| 性久久久久久久| 国产麻豆91精品| 日本道色综合久久| 欧美一区二区在线免费观看| 久久久久久黄色| 亚洲人亚洲人成电影网站色| 视频一区视频二区中文| 国产乱妇无码大片在线观看| 色女孩综合影院| 日韩免费观看2025年上映的电影 | 精品成人免费观看| 18欧美亚洲精品| 另类欧美日韩国产在线| 成人午夜电影久久影院| 欧美日韩黄视频| 中文在线资源观看网站视频免费不卡| 亚洲黄色片在线观看| 久久电影网电视剧免费观看| 一本色道**综合亚洲精品蜜桃冫| 精品日韩一区二区三区免费视频| 中文字幕一区二区在线观看| 免费高清不卡av| 色一情一乱一乱一91av| 久久久综合九色合综国产精品| 亚洲一区二区在线免费观看视频 | 欧美高清一级片在线观看| 五月婷婷综合在线| 99久久精品免费| 欧美精品一区男女天堂| 偷拍自拍另类欧美| 97精品国产露脸对白| 久久久99免费| 日韩av不卡一区二区| 91视频一区二区三区| 国产色一区二区| 乱中年女人伦av一区二区| 欧美日韩视频不卡| 曰韩精品一区二区| 成人av资源下载| 337p粉嫩大胆噜噜噜噜噜91av | 中文字幕一区二区在线观看| 国产在线视频一区二区| 日韩一区二区在线免费观看| 亚洲国产精品久久久久婷婷884| 成人精品电影在线观看| 久久亚洲一区二区三区四区| 日本视频在线一区| 欧美精品精品一区| 一区二区不卡在线视频 午夜欧美不卡在| 国产 日韩 欧美大片| 337p粉嫩大胆色噜噜噜噜亚洲 | 成人一区二区三区中文字幕| 欧美精品一区男女天堂| 久久成人av少妇免费| 欧美高清dvd| 日韩精品一二三四| 欧美性videosxxxxx| 夜夜嗨av一区二区三区四季av| www.欧美日韩| 亚洲三级在线看| 99久久精品免费精品国产| 亚洲欧洲美洲综合色网| 99久久99久久久精品齐齐| 亚洲图片激情小说| 成人高清av在线| 综合网在线视频| 91日韩一区二区三区| 亚洲人吸女人奶水| 欧美午夜精品久久久久久超碰| 一区二区免费在线| 欧美三级中文字| 奇米一区二区三区av| 精品欧美一区二区久久| 国产麻豆视频精品| 国产精品的网站| 日本久久精品电影| 五月婷婷激情综合| 日韩欧美国产一区二区三区| 韩国欧美国产1区| 亚洲国产精品99久久久久久久久| 成人成人成人在线视频| 亚洲精品亚洲人成人网| 欧美日韩高清一区| 韩国av一区二区三区四区| 国产免费久久精品| 一本大道av伊人久久综合| 亚洲午夜久久久久久久久电影网| 91精品国产综合久久婷婷香蕉| 麻豆国产精品视频| 欧美激情一区二区| 精品视频一区三区九区| 久久精品国产精品亚洲红杏| 国产欧美一区在线| 欧美视频完全免费看| 久久国产精品99精品国产| 国产精品成人免费| 欧美日韩亚州综合| 国产精品亚洲午夜一区二区三区| 综合久久一区二区三区| 日韩一区二区三| 99在线精品免费| 老司机午夜精品|