亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? demje2.m

?? Matlab toolbox that contains functions of Kalman filter and random system simulation.
?? M
字號:
% DEMJE2 Demonstrate nonlinear time series joint estimation for Mackey-Glass chaotic time series
%
%  The Mackey-Glass time-delay differential equation is defined by
%
%            dx(t)/dt = 0.2x(t-tau)/(1+x(t-tau)^10) - 0.1x(t)
%
%  When x(0) = 1.2 and tau = 17, we have a non-periodic and non-convergent time series that
%  is very sensitive to initial conditions. (We assume x(t) = 0 when t < 0.)
%
%  We assume that the chaotic time series is generated with by a nonlinear autoregressive
%  model where the nonlinear functional unit is a feedforward neural network. We use a
%  tap length of 6 and a 6-4-1 MLP neural network (using the Netlab toolkit) with hyperbolic
%  tangent activation functions in the hidden layer and a linear output activation.
%
%   See also
%   GSSM_MACKEY_GLASS

%   Copyright  (c) Rudolph van der Merwe (2002)
%
%   This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for
%   academic use only (see included license file) and can be obtained by contacting
%   rvdmerwe@ece.ogi.edu.  Businesses wishing to obtain a copy of the software should
%   contact ericwan@ece.ogi.edu for commercial licensing information.
%
%   See LICENSE (which should be part of the main toolkit distribution) for more
%   detail.

%===============================================================================================

clc;
clear all; close all;

fprintf('\nDEMJE2:  This demonstration shows how the ReBEL toolkit is used for joint estimation\n');
fprintf('         on a nonlinear time series (Mackey-Glass-30) problem. The scalar observation\n');
fprintf('         is corrupted by additive white Gaussian noise. A neural network is used as a\n');
fprintf('         generative model for the time series. We estimate both the model parameters and\n');
fprintf('         the underlying clean state from the noisy observations.\n');
fprintf('         We compare the performance of an EKF and a SRCDKF by iterating on the same sequence.\n\n');
fprintf('    NOTE : This demos is quite computationally expensive... so on a slow computer it might take a while.\n\n');


%--- General setup

addrelpath('../gssm');         % add relative search path to example GSSM files to MATLABPATH
addrelpath('../data');         % add relative search path to example data files to MATLABPATH

%--- Initialise GSSM model from external system description script.
model = gssm_mackey_glass('init');


%--- Load normalized Mackey glass data set

load('mg30_normalized.mat');                           % loads mg30_data from ../data/mg30_normalized.mat

mg30_data = mg30_data(100:100+300-1);


%--- Build state space data matrix of input data

X = datamat(mg30_data, model.statedim);                 % pack vector of data into datamtrix for NN input

[dim,N]  = size(X);                                     % dimension and number of datapoints
y  = zeros(model.obsdim,N);                             % observation data buffer

clean_signal_var = var(mg30_data);                      % determine variance of clean time series

SNR = 3;                                                % 3db SNR
onoise_var = clean_signal_var/10^(SNR/10);              % determine needed observation noise variance for a given SNR

model.oNoise.cov = onoise_var;                            % set observation noise covariance

onoise = feval(model.oNoise.sample, model.oNoise, N);   % generate observation noise

y   = feval(model.hfun, model, X, onoise);   % generate observed time series (corrupted with observation noise)

%----

ftype1 = 'ekf';
ftype2 = 'srcdkf';


%--- Setup argument data structure which serves as input to
%--- the 'geninfds' function. This function generates the InferenceDS and
%--- SystemNoiseDS data structures which are needed by all inference algorithms
%--- in the PiLab toolkit.

Arg.type = 'joint';                                  % inference type (state estimation)
Arg.tag = 'Joint estimation for GSSM_MACKEY_GLASS system.';  % arbitrary ID tag
Arg.model = model;                                   % GSSM data structure of external system

InfDS = geninfds(Arg);                               % create inference data structure

[pNoise1, oNoise1, InfDS1] = gensysnoiseds(InfDS,ftype1);    % generate process and observation noise sources for EKF
[pNoise2, oNoise2, InfDS2] = gensysnoiseds(InfDS,ftype2);    % generate process and observation noise sources for SRCDKF


%--- Setup runtime buffers

Xh = zeros(InfDS.statedim,N);          % state estimation buffer
Px = eye(InfDS.statedim);            % initial state covariance
Px(model.statedim+1:end,model.statedim+1:end) = 0.1*eye(model.paramdim);

Xh(model.statedim+1:end,1) = mlpweightinit(model.nodes);              % randomize initial model parameters

Xh1 = Xh;
Px1 = Px;

Xh2 = Xh;
Sx2 = chol(Px)';                     % SRCDKF is a square-root algorithm and hence it operates on the Cholesky factor
                                     % of the covariance matrix
number_of_runs = 10;                  % we will iterate over the data 'number_of_runs' times

mse1 = zeros(1,number_of_runs);       % buffers to store the MSE of each runs estimate
mse2 = mse1;

mse1(1) = mean((y(1,:)-X(1,:)).^2)/var(y(1,:));    % initial MSE of noisy signal
mse2(1) = mse1(1);

%--- Setup process noise data structures for joint estimation

  pNoiseAdaptMethod = 'anneal';                                % setup process noise adaptation method (improves convergence)
  pNoiseAdaptParams = [0.995 1e-7];                            % annealing factor = 0.95     annealing floor variance = 1e-8

  pNoiseCov0 = 1e-4*eye(model.paramdim);

  pNoise1.adaptMethod = pNoiseAdaptMethod;
  pNoise1.adaptParams = pNoiseAdaptParams;

  pNoise2.adaptMethod = pNoiseAdaptMethod;
  pNoise2.adaptParams = pNoiseAdaptParams;

  pNoise1.cov(2:end,2:end) = pNoiseCov0;         % set initial variance of process noise parameter estimation subvector
  pNoise2.cov(2:end,2:end) = chol(pNoiseCov0)';  % set initial variance of process noise parameter estimation subvector


%---

fprintf('\n Running joint estimators ... \n\n');


%--- Call inference algorithm / estimator

for k=1:number_of_runs,

  fprintf(' [%d:%d] ',k,number_of_runs);


  %------------------- Extended Kalman Filter ------------------------------------


  [Xh1, Px1, pNoise1] = ekf(Xh1(:,1), Px1, pNoise1, oNoise1, y, [], [], InfDS1);


  %------------------- Square-root Central Difference Kalman Filter -------------

  InfDS2.spkfParams = sqrt(3); ;                                 % scale factor (CDKF parameter)

  [Xh2, Sx2, pNoise2] = srcdkf(Xh2(:,1), Sx2, pNoise2, oNoise2, y, [], [], InfDS2);

  %---------------------------------------------------------------------------------


  %--- Calculate normalized mean square estimation error

  mse1(k+1) = mean((Xh1(1,:)-X(1,:)).^2)/var(y(1,:));
  mse2(k+1) = mean((Xh2(1,:)-X(1,:)).^2)/var(y(1,:));

  %--- Plot results

  figure(1); clf; subplot('position',[0.025 0.1 0.95 0.8]);
  p1 = plot(X(1,:),'b','linewidth',2); hold on
  p2 = plot(y,'g+');
  p3 = plot(Xh1(1,:),'m');
  p4 = plot(Xh2(1,:),'r'); hold off
  legend([p1 p2 p3 p4],'clean','noisy','EKF estimate','SRCDKF estimate');
  xlabel('time');
  ylabel('x');
  title('DEMSE3 : Mackey-Glass-30 Chaotic Time Series Joint Estimation');

  figure(2);
  p1 = plot(mse1(2:k+1),'m-o'); hold on;
  p2 = plot(mse2(2:k+1),'r-s'); hold off;
  legend([p1 p2],'EKF','SRCDKF');
  title('Normalized MSE of Estimates');
  xlabel('k');
  ylabel('MSE');
  drawnow

  fprintf('  Mean-square-error (MSE) of estimates : EKF = %4.3f    SRCDKF = %4.3f\n', mse1(k+1), mse2(k+1));


  %-- Copy last estimate of model parameters to initial buffer position for next iteration...

  Xh1(model.statedim+1:end,1) = Xh1(model.statedim+1:end,end);              % copy model parameters over
  Xh1(1:model.statedim,1) = zeros(model.statedim,1);                        % reset state estimate
  Px1_temp = eye(InfDS.statedim);                                           % copy covariance of parameter estimates
  Px1_temp(model.statedim+1:end,model.statedim+1:end) = Px1(model.statedim+1:end,model.statedim+1:end);
  Px1 = Px1_temp;

  Xh2(model.statedim+1:end,1) = Xh2(model.statedim+1:end,end);              % copy model parameters over
  Xh2(1:model.statedim,1) = zeros(model.statedim,1);                        % reset state estimate
  Sx2_temp = eye(InfDS.statedim);                                           % copy covariance of parameter estimates
  Sx2_temp(model.statedim+1:end,model.statedim+1:end) = Sx2(model.statedim+1:end,model.statedim+1:end);
  Sx2 = Sx2_temp;


end


%--- House keeping

remrelpath('../gssm');       % remove relative search path to example GSSM files from MATLABPATH
remrelpath('../data');       % remove relative search path to example data files from MATLABPATH

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
天使萌一区二区三区免费观看| 亚洲成a天堂v人片| 91国内精品野花午夜精品| 日韩1区2区3区| 国产精品久久久久久久蜜臀| 欧美一区二区视频免费观看| 成人av动漫在线| 日韩电影在线一区| 亚洲欧美成人一区二区三区| 久久尤物电影视频在线观看| 欧美日韩一二三| 99久久国产免费看| 国产一区视频在线看| 日韩精品福利网| 亚洲激情五月婷婷| 国产精品二三区| 26uuu国产电影一区二区| 欧美精品精品一区| 色乱码一区二区三区88| 成人h动漫精品一区二| 国产精品影视在线观看| 琪琪久久久久日韩精品| 亚洲五码中文字幕| 一区二区三区在线视频免费| 国产天堂亚洲国产碰碰| 日韩精品一区二区三区三区免费| 欧美系列在线观看| 欧洲精品中文字幕| 91在线观看成人| 成人黄色大片在线观看| 国产精品中文字幕欧美| 国产原创一区二区| 韩国一区二区三区| 免费观看日韩电影| 免费成人在线播放| 欧美96一区二区免费视频| 亚洲成av人综合在线观看| 亚洲精品一二三四区| 亚洲精品五月天| 亚洲欧洲综合另类| 亚洲欧美日韩在线不卡| 亚洲男女一区二区三区| 亚洲综合一区二区三区| 亚洲一区二区视频| 一区二区在线观看视频在线观看| 亚洲免费在线播放| 亚洲伊人伊色伊影伊综合网| 一区二区三区欧美亚洲| 亚洲国产aⅴ成人精品无吗| 亚洲一区二区影院| 日韩国产一二三区| 久久精品国产亚洲一区二区三区| 久久99精品久久久久久| 国产一区激情在线| 成人美女视频在线观看18| 99精品久久久久久| 欧美怡红院视频| 在线播放亚洲一区| 精品电影一区二区三区| 国产欧美一区二区精品婷婷 | 国产精品美女久久久久aⅴ| 国产亚洲欧美激情| 中文字幕精品三区| 一区二区三区中文字幕电影 | 精品在线播放免费| 国产激情视频一区二区在线观看| 成人久久久精品乱码一区二区三区 | 综合精品久久久| 大美女一区二区三区| 成人一区在线看| 91一区二区三区在线观看| 欧美日韩专区在线| 精品欧美一区二区三区精品久久| 国产三级一区二区| 一区二区三区在线免费视频| 日韩电影免费一区| 国产.欧美.日韩| 欧美亚洲丝袜传媒另类| 日韩精品专区在线| 日韩美女啊v在线免费观看| 亚洲va欧美va人人爽午夜| 国内精品在线播放| 91免费版在线看| 91精品国产综合久久国产大片| 欧美精品一区二区三区在线| 综合激情网...| 另类人妖一区二区av| 色综合天天综合在线视频| 欧美一级国产精品| 亚洲女女做受ⅹxx高潮| 久久99精品国产麻豆不卡| kk眼镜猥琐国模调教系列一区二区| 欧美日韩一区中文字幕| 国产人成亚洲第一网站在线播放| 亚洲一区二区在线免费观看视频| 国产一区不卡在线| 6080午夜不卡| 亚洲人成精品久久久久久| 国内成+人亚洲+欧美+综合在线| 色成人在线视频| 亚洲国产精品传媒在线观看| 视频一区二区中文字幕| 99国产欧美另类久久久精品| 欧美成人三级在线| 午夜精品久久久久久久久久 | 在线精品视频小说1| 久久久国产午夜精品 | 国产成人免费在线观看| 欧美日韩高清一区二区不卡| 国产精品伦一区| 精品制服美女丁香| 欧美日产国产精品| 亚洲另类中文字| 成人黄色软件下载| 国产欧美日韩久久| 激情综合网激情| 欧美精品久久久久久久久老牛影院| 中文字幕一区二区三区av| 国产久卡久卡久卡久卡视频精品| 91精品国产入口| 亚洲一区二区视频在线| 91女神在线视频| 国产精品免费网站在线观看| 国产成人精品综合在线观看 | 久久久久久久久久电影| 久久精品国产精品亚洲红杏| 欧美精品视频www在线观看| 一区二区不卡在线播放| 91在线视频在线| 日韩理论片中文av| a级精品国产片在线观看| 国产精品美女一区二区三区| 福利一区二区在线| 国产欧美精品区一区二区三区| 国内不卡的二区三区中文字幕| 欧美一级理论片| 美脚の诱脚舐め脚责91| 日韩欧美一区中文| 九九国产精品视频| 久久影音资源网| 国产成人精品亚洲午夜麻豆| 免播放器亚洲一区| 91精品国产综合久久精品app | 精品视频全国免费看| 亚洲国产精品综合小说图片区| 91福利国产成人精品照片| 亚洲精品成人悠悠色影视| 欧美午夜精品久久久久久孕妇| 亚洲国产裸拍裸体视频在线观看乱了| 欧美亚洲一区二区在线| 五月天丁香久久| 欧美一区日韩一区| 久久精品国产亚洲一区二区三区| 欧美精品一区二区精品网| 国产宾馆实践打屁股91| 国产精品久久久久久久久久免费看 | 亚洲一区av在线| 欧美一区二区网站| 精品一区二区三区视频| 中文字幕免费不卡| 欧洲在线/亚洲| 奇米色777欧美一区二区| 久久久久亚洲蜜桃| 99精品久久只有精品| 日日骚欧美日韩| 久久亚区不卡日本| 97久久久精品综合88久久| 亚洲成人av免费| 久久久久国产精品麻豆| 一本一本久久a久久精品综合麻豆 一本一道波多野结衣一区二区 | 日韩高清一级片| 2023国产一二三区日本精品2022| 成人免费不卡视频| 午夜视黄欧洲亚洲| 国产丝袜欧美中文另类| 欧美日韩在线播放三区| 国产一区二区不卡| 亚洲资源中文字幕| 久久综合色之久久综合| 色综合久久中文字幕| 美女久久久精品| 中文字幕日本乱码精品影院| 8x福利精品第一导航| 国产不卡视频一区| 日韩精品一卡二卡三卡四卡无卡| 国产亚洲一区二区三区四区| 欧美图区在线视频| 在线不卡中文字幕| av在线不卡免费看| 久久不见久久见免费视频7| 亚洲欧美色综合| 久久久久成人黄色影片| 欧美日韩国产三级| 成人亚洲一区二区一| 久久精品国产一区二区| 亚洲高清免费观看| 国产精品初高中害羞小美女文| 欧美白人最猛性xxxxx69交| 日本高清视频一区二区| 国产福利一区二区|