亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? demspeech_dual.m

?? Matlab toolbox that contains functions of Kalman filter and random system simulation.
?? M
字號:
%  DEMSPEECH_DUAL  Sigma-Point Kalman Filter based Speech Enhancement Demonstration.%%  A single phoneme of speech, corrupted by additive colored noise is enhanced%  (cleaned up) through Dual SPKF (SRCDKF) based estimation.%%  A single speech phoneme sampled at 8kHz is corrupted by additive colored (pink)%  noise. We use a simple linear autoregressive model (10th order) to model the%  generative model of the speech signal. We model the pink noise by a known 6th%  order linear autoregressive process driven by white Gaussian noise with known%  variance. The SNR of the noisy signal (y=clean+noise) is 0dB.%%  The colored noise modeling (augmented state space model) is done according to%  the method proposed in: "Filtering of Colored Noise for Speech Enhancment and%  Coding", by J. D. Gibson, B. Koo and S. D. Gray, IEEE Transactions on Signal%  Processing, Vol. 39, No. 8, August 1991.%%  See also : GSSM_SPEECH_LINEAR%   Copyright  (c) Rudolph van der Merwe (2002)%%   This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for%   academic use only (see included license file) and can be obtained by contacting%   rvdmerwe@ece.ogi.edu.  Businesses wishing to obtain a copy of the software should%   contact ericwan@ece.ogi.edu for commercial licensing information.%%   See LICENSE (which should be part of the main toolkit distribution) for more%   detail.%===============================================================================================clear all; close all; clc;if ~exist('aryule')  error(' [demspeech_dual] This demonstration requires the Matlab Signal Processing Toolbox to function correctly.');endhelp demspeech_dualdisp(' ');disp(' ');disp('Two speech time-series estimates are extracted from the estimated state vectors.');disp('The first is generated by taking the first component (zero''th lag term) of the');disp('state vector. The second estimate is generated by using the last (10th lag)');disp('component of the state vector, which is a fixed-lag smoothed estimate (it uses');disp('more data).');disp(' ');disp('After each iteration (over the whole speech sequence) of the filter, the normalised');disp('MSE of each estimate is displayed. Three speech sequences are also played over the');disp('audio device: The first is the noisy sequence, the second is the first estimate and');disp('the third is the second (full-lag) estimate.')disp(' ');dosound = input('Do you want to enable the audio component of this demo (0=no 1=yes) ? ');%--- General setupaddrelpath('../gssm');         % add relative search path to example GSSM files to MATLABPATHaddrelpath('../data');         % add relative search path to example data files to MATLABPATH%-- Load clean speech, noise and noisy speech (0dB SNR)load speech_data;                       %B=0;N=1500;clean = clean(B+1:B+N);noisy = noisy(B+1:B+N);noise = noise(B+1:B+N);%-- Display speech waveformsfigure(1);clf; subplot('position',[0.025 0.1 0.95 0.8]);p1=plot(noisy,'k+'); hold on;p2=plot(clean,'b');xlabel('time');legend([p1 p2],'noisy','clean');title('ReBEL Speech Enhancement Demo');axis tightdrawnow%-- Initialise GSSM data structuremodel = gssm_speech_linear('init');            % initialize%=====================================================================%  Generate InferenceDS data structures for dual estiamtion. We need%  one for the state estimator and one for the parameter estimator.ftype = 'srcdkf';                                     % we will use square-root central difference Kalman filter (SRCDKF)                                                      % estimatorparamParamIdxVec = 1:model.speech_taps;               % index vector of the system parameters to be estimated (don't estimate                                                      % colored noise model parameters)  %-- Setup state estimator  Arg.type = 'state';                                   % inference type (state estimation)  Arg.tag = 'State estimation for GSSM_SPEECH system.'; % arbitrary ID tag  Arg.model = model;                                    % GSSM data structure of external system  InfDS_SE = geninfds(Arg);                             % Create inference data structure and  [pNoise_SE, oNoise_SE, InfDS_SE] = gensysnoiseds(InfDS_SE, ftype);   % generate process and observation                                                             % noise sources for state estimator  %-- Setup parameter estimator  clear Arg;  Arg.type = 'parameter';                                % inference type (parameter estimation)  Arg.tag = 'Parameter estimation for GSSM_SPEECH system.'; % arbitrary ID tag  Arg.paramFunSelect = 'both';                           % We use the full system dynamics as observation, i.e. obs=hfun(ffun(x))  Arg.paramParamIdxVec = paramParamIdxVec;               % parameters to be estimated index vector (don't estimate colored                                                         % noise model)  Arg.model = model;                                     % GSSM data structure of external system  %-- Explicitely define a observation noise source for the parameter estimator. This is needed for the colored noise  %   case, since it uses an implicit (within the augmented state) observation noise formulation. When a parameter estimator  %   is derived from this type of model, one has to override the default (empty/dummy) observation noise source that is  %   generated.  Arg.model.Ndim = 1;                                    % We need to override these field for the parameter estimator  oNoise_Arg.type = 'gaussian';                          % and actually define a true observation noise source.  oNoise_Arg.cov_type = 'sqrt';  oNoise_Arg.dim = 1;  oNoise_Arg.mu = 0;  oNoise_Arg.cov  = sqrt(pNoise_SE.cov(2,2));  Arg.model.oNoise = gennoiseds(oNoise_Arg);  InfDS_PE = geninfds(Arg);  [pNoise_PE, oNoise_PE, InfDS_PE] = gensysnoiseds(InfDS_PE, ftype);    % generate process and observation                                                              % noise sources for state estimator%-- ESTIMATE SIGNALN = length(noisy);                                    % number of samples in frameXh_SE = zeros(InfDS_SE.statedim, N);                  % setup estimation buffersXh_PE = zeros(InfDS_PE.statedim, N);                  %     "              "init_mod = aryule(noisy, model.speech_taps);          % initial model is fit to noisy speechinit_mod = -1*init_mod(2:end);Xh_PE(:,1) = init_mod(:);                             % initial modelSx_SE = eye(InfDS_SE.statedim);                       % initial Cholesky factor of SE estimate covarianceSx_PE = eye(InfDS_PE.statedim);                       % initial Cholesky factor of PE estimate covarianceInfDS_SE.spkfParams = [sqrt(3)];                      % CDKF scale parameter for SE estimatorInfDS_PE.spkfParams = [sqrt(3)];                      % CDKF scale parameter for PE estimatornumber_of_runs = 10;                                  % number of iterations over datamse = zeros(2,number_of_runs);                        % mean square error bufferpNoise_PE.cov = 1*eye(InfDS_PE.statedim);             % set initial covariance for PE proces noisepNoise_PE.adaptMethod = 'anneal';                     % setup PE process noise adaptation methodpNoise_PE.adaptParams = [0.995 1e-7];                 % We use the annealing method with a anneal factor of                                                      % 0.98 and a variance floor of 1e-7for k=1:number_of_runs,    fprintf(' [%d:%d] ',k,number_of_runs);    % For dual estimation we iterate over the data, alternating between a state estimation step and a    % parameter estimation step    for j=2:N,      %--- First, we set the model parmaters of the state estimator using the surrent output of the parameter      %--- estimator      InfDS_SE.model = feval(InfDS_SE.model.setparams, InfDS_SE.model, Xh_PE(:,j-1), paramParamIdxVec);      %--- Now call the state estimator      [Xh_SE(:,j), Sx_SE] = srcdkf(Xh_SE(:,j-1), Sx_SE, pNoise_SE, oNoise_SE, noisy(:,j), [], [], InfDS_SE);      %--- And then the parameter estimator      [Xh_PE(:,j), Sx_PE, pNoise_PE] = srcdkf(Xh_PE(:,j-1), Sx_PE, pNoise_PE, oNoise_PE, noisy(:,j), [], Xh_SE(:,j-1), InfDS_PE);    end    noisy_c = noisy(1:end-model.speech_taps+1);    clean_c = clean(1:end-model.speech_taps+1);    estim_1 = Xh_SE(1,1:end-model.speech_taps+1);    estim_2 = Xh_SE(model.speech_taps,model.speech_taps:end);    figure(1);clf; subplot('position',[0.025 0.1 0.95 0.8]);    p1 = plot(noisy_c,'k+'); hold on;    p2 = plot(clean_c,'b');    p3 = plot(estim_1,'m');    p4 = plot(estim_2,'r'); hold off    xlabel('time');    legend([p1 p2 p3 p4],'noisy','clean','estimate (0 lag)','estimate (full lag)');    title('ReBEL Speech Enhancement Demo');    axis tight    figure(2);    plot(Xh_PE'); hold off    xlabel('k');    ylabel('parameters');    title('Estimate of model parameters');    drawnow    mse(1,k) = mean((estim_1-clean_c).^2)/var(noisy_c);    mse(2,k) = mean((estim_2-clean_c).^2)/var(noisy_c);    fprintf('  Normalized MSE : 0-lag estimate  = %4.3f   full-lag estimate =  %4.3f\n',mse(1,k),mse(2,k));    if dosound      fprintf('   Playing : noisy sample...');      soundsc(noisy_c,8000,16);      pause(1);      fprintf(' 0-lag estimate...');      soundsc(estim_1,8000,16);      pause(1);      fprintf(' full-lag estimate...');      soundsc(estim_2,8000,16);      pause(1);      fprintf(' clean sample.\n');      soundsc(clean_c,8000,16);    end    %-- Reset state estimates and covariance    Xh_SE(:,1) = zeros(InfDS_SE.statedim,1);    Sx_SE = eye(InfDS_SE.statedim);    %-- Copy last estimate of model parameters to initial buffer position for next iteration...    Xh_PE(:,1) = Xh_PE(:,end);end%--- House keepingremrelpath('../gssm');       % remove relative search path to example GSSM files from MATLABPATHremrelpath('../data');       % remove relative search path to example data files from MATLABPATH

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美激情在线看| www国产精品av| 欧美剧在线免费观看网站| 91在线观看美女| 欧美日免费三级在线| 日韩欧美专区在线| 国产精品久久久久久久浪潮网站| 中文子幕无线码一区tr| 亚洲人123区| 三级欧美韩日大片在线看| 麻豆成人久久精品二区三区小说| 狠狠色2019综合网| 色呦呦国产精品| 欧美一卡二卡在线| 国产精品久线在线观看| 亚洲va在线va天堂| 国产精品综合在线视频| 色婷婷一区二区| 精品国产91久久久久久久妲己 | 99精品视频在线播放观看| 99re免费视频精品全部| 欧美日韩国产系列| 国产精品成人一区二区三区夜夜夜 | 欧美一区二区三区免费观看视频| 欧美国产一区在线| 午夜激情综合网| 不卡一区二区中文字幕| 欧美一激情一区二区三区| 国产人久久人人人人爽| 石原莉奈在线亚洲三区| 91美女福利视频| 国产日韩精品久久久| 日韩高清欧美激情| 欧美三级中文字| 日韩美女视频一区二区| 国产美女一区二区三区| 欧美日韩一本到| 亚洲少妇中出一区| 91色婷婷久久久久合中文| 在线免费观看日本欧美| 亚洲精品免费一二三区| 国v精品久久久网| 久久色视频免费观看| 人人爽香蕉精品| 91精品午夜视频| 免费av网站大全久久| 91麻豆精品国产91久久久资源速度 | 亚洲精品久久久久久国产精华液| 国产成人av电影在线播放| 精品国产污污免费网站入口| 精品一区二区三区免费观看| 日韩亚洲欧美在线| 老汉av免费一区二区三区| 欧美一区二区三区思思人| 日本亚洲免费观看| 欧美经典一区二区三区| 国产乱理伦片在线观看夜一区| 26uuu亚洲婷婷狠狠天堂| 成人国产免费视频| 日本欧洲一区二区| 亚洲乱码国产乱码精品精可以看| 欧美一区二区三区白人| 色综合色综合色综合 | 亚洲人成影院在线观看| 日韩欧美国产综合一区| 色菇凉天天综合网| 国产成人亚洲综合a∨猫咪| 午夜精品爽啪视频| 国产精品成人午夜| 精品国免费一区二区三区| 在线精品视频一区二区三四| 韩国理伦片一区二区三区在线播放| 亚洲人成小说网站色在线| 久久嫩草精品久久久精品| 欧美卡1卡2卡| 不卡一区二区在线| 亚洲成人免费看| 久久久久国产精品麻豆| 欧美日韩国产高清一区二区三区| 国产精品1024| 日韩av成人高清| 一区二区三区资源| 国产日韩成人精品| 欧美日韩在线不卡| 色呦呦网站一区| 国产成人综合精品三级| 婷婷开心久久网| 亚洲一级二级三级| 亚洲天堂成人在线观看| 精品国产乱码久久久久久夜甘婷婷| 欧美日韩亚洲综合在线 | 亚洲综合视频在线| 综合久久久久久| 久久久91精品国产一区二区精品| 欧美一区二区福利视频| 欧美日韩成人综合天天影院| www.66久久| 色综合天天性综合| gogo大胆日本视频一区| 成人免费观看av| 国产成人免费xxxxxxxx| 国产成人午夜高潮毛片| 精品系列免费在线观看| 精品一区二区av| 国内精品伊人久久久久av影院| 另类欧美日韩国产在线| 日本aⅴ免费视频一区二区三区| 日韩高清不卡在线| 麻豆久久一区二区| 国产美女精品一区二区三区| 国产寡妇亲子伦一区二区| 国产美女主播视频一区| av电影在线观看一区| 99久久久国产精品| 欧美日韩高清一区二区不卡| 日韩一级片在线观看| 欧美精彩视频一区二区三区| 欧美激情综合五月色丁香小说| 一区精品在线播放| 肉丝袜脚交视频一区二区| 九一九一国产精品| 色综合中文综合网| 中文字幕精品一区二区三区精品| 中文字幕亚洲一区二区va在线| 亚洲精品免费看| 精品一区二区在线播放| 成人精品视频网站| 在线观看91av| 欧美激情综合五月色丁香| 亚洲一线二线三线视频| 国产一区二区三区精品欧美日韩一区二区三区 | 色又黄又爽网站www久久| 日韩一区二区三区观看| 一区二区高清在线| 成人av网站免费| 久久影视一区二区| 精品亚洲国产成人av制服丝袜| 欧美日韩在线播| 中文字幕av一区二区三区高 | 亚洲五码中文字幕| 99久久夜色精品国产网站| 欧美国产日韩一二三区| 国产精品原创巨作av| 精品国产一区a| 奇米精品一区二区三区在线观看| 欧美性色aⅴ视频一区日韩精品| 久久精品男人天堂av| 国产麻豆精品95视频| 精品精品国产高清a毛片牛牛| 日韩精品免费视频人成| 欧美一区二区私人影院日本| 午夜精品福利一区二区三区蜜桃| 日本韩国一区二区三区视频| 一区二区三区日本| 91国偷自产一区二区使用方法| 亚洲免费在线观看| 欧美视频精品在线观看| 午夜视频一区二区| 日韩欧美一区电影| 国产一区中文字幕| 日韩一区欧美一区| 欧美视频一二三区| 国产一区二区美女诱惑| 国产欧美日韩一区二区三区在线观看| 韩国av一区二区三区| 国产精品国产三级国产aⅴ无密码| 国产99一区视频免费| 亚洲影视在线播放| 欧美mv和日韩mv的网站| 国产成人鲁色资源国产91色综 | 国产精品久久777777| 色综合久久88色综合天天6| 水野朝阳av一区二区三区| 91麻豆精品国产91久久久久 | 欧美精品 日韩| 亚洲另类中文字| 精品少妇一区二区三区| av在线播放不卡| 免费在线成人网| 国产精品久久久久三级| 亚洲精品国产精品乱码不99| 在线国产亚洲欧美| 粉嫩av一区二区三区在线播放| 国产一区二区三区在线观看免费| 亚洲a一区二区| 亚洲成人手机在线| 亚洲成人黄色小说| 日本不卡123| 黄色小说综合网站| 国产激情偷乱视频一区二区三区| 成人aa视频在线观看| 99久久免费视频.com| 91久久精品一区二区三区| 成人av在线资源网| 国产精品一卡二卡| 日本不卡视频在线| 午夜成人免费电影| 日本一区二区三级电影在线观看 | 亚洲一区二区中文在线| 久久久久久久久久美女|