亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? demse3.m

?? Matlab toolbox that contains functions of Kalman filter and random system simulation.
?? M
字號:
% DEMSE3  Demonstrate nonlinear time series state estimation for Mackey-Glass chaotic time series%%  The Mackey-Glass time-delay differential equation is defined by%%            dx(t)/dt = 0.2x(t-tau)/(1+x(t-tau)^10) - 0.1x(t)%%  When x(0) = 1.2 and tau = 17, we have a non-periodic and non-convergent time series that%  is very sensitive to initial conditions. (We assume x(t) = 0 when t < 0.)%%  We assume that the chaotic time series is generated with by a nonlinear autoregressive%  model where the nonlinear functional unit is a feedforward neural network. We use a%  tap length of 6 and a 6-4-1 MLP neural network (using the Netlab toolkit) with hyperbolic%  tangent activation functions in the hidden layer and a linear output activation.%%   See also%   GSSM_MACKEY_GLASS, DEMSE1, DEMSE2%   Copyright  (c) Rudolph van der Merwe (2002)%%   This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for%   academic use only (see included license file) and can be obtained by contacting%   rvdmerwe@ece.ogi.edu.  Businesses wishing to obtain a copy of the software should%   contact ericwan@ece.ogi.edu for commercial licensing information.%%   See LICENSE (which should be part of the main toolkit distribution) for more%   detail.%=============================================================================================clc;clear all;fprintf('\nDEMSE3 : Demonstrate nonlinear state estimation for Mackey-Glass chaotic time series\n\n');%--- General setupaddrelpath('../gssm');         % add relative search path to example GSSM files to MATLABPATHaddrelpath('../data');         % add relative search path to example data files to MATLABPATH%--- Initialise GSSM model from external system description script.model = gssm_mackey_glass('init');%--- Load normalized Mackey glass data setload('mg30_normalized.mat');                            % load 'mg30_data' variablemg30_data = mg30_data(1:1000);                          % only use 1000 data points%--- Build state space data matrix of input dataX = datamat(mg30_data, model.statedim);                 % pack vector of data into datamtrix for NN input[dim,N]  = size(X);                                     % dimension and number of datapointsy  = zeros(model.obsdim,N);                             % observation data bufferclean_signal_var = var(mg30_data);                      % determine variance of clean time seriesSNR = 3;                                                % 3db SNRonoise_var = clean_signal_var/10^(SNR/10);              % determine needed observation noise variance for a given SNRmodel.oNoise.cov = onoise_var;                            % set observation noise covarianceonoise = feval(model.oNoise.sample, model.oNoise, N);   % generate observation noisey   = feval(model.hfun, model, X, onoise);    % generate observed time series (corrupted with observation noise)figure(1);p1=plot(X(1,:),'b'); hold on;p2=plot(y,'g+');legend([p1 p2],'clean','noisy');xlabel('time - k');drawnow%--- Ask the user which inference algorithm to useftype = input('Type of estimator [ ekf, ukf, cdkf, srcdkf or srukf ] ? ','s');%--- Setup argument data structure which serves as input to%--- the 'geninfds' function. This function generates the InferenceDS and%--- SystemNoiseDS data structures which are needed by all inference algorithms%--- in the PiLab toolkit.Arg.type = 'state';                                  % inference type (state estimation)Arg.tag = 'State estimation for GSSM_MACKEY_GLASS system.';  % arbitrary ID tagArg.model = model;                                   % GSSM data structure of external systemInfDS = geninfds(Arg);                               % Create inference data structure and[pNoise, oNoise, InfDS] = gensysnoiseds(InfDS,ftype);       % generate process and observation noise sources%--- Setup runtime buffersXh = zeros(InfDS.statedim,N);          % state estimation bufferXh(:,1) = X(:,1);     % initial estimate of state E[X(0)]Px = eye(InfDS.statedim);              % initial state covariance%--- Call inference algorithm / estimatorswitch ftype    %------------------- Extended Kalman Filter ------------------------------------    case 'ekf'        [Xh, Px] = ekf(Xh(:,1), Px, pNoise, oNoise, y, [], [], InfDS);    %------------------- Unscented Kalman Filter -----------------------------------    case 'ukf'        alpha = 1;         % scale factor (UKF parameter)        beta  = 2;         % optimal setting for Gaussian priors (UKF parameter)        kappa = 0;         % optimal for state dimension=2 (UKF parameter)        InfDS.spkfParams = [alpha beta kappa];        [Xh, Px] = ukf(Xh(:,1), Px, pNoise, oNoise, y, [], [], InfDS);    %------------------- Central Difference Kalman Filter ---------------------------    case 'cdkf'        InfDS.spkfParams = sqrt(3);    % scale factor (CDKF parameter h)        [Xh, Px] = cdkf(Xh(:,1), Px, pNoise, oNoise, y, [], [], InfDS);    %------------------- Square Root Unscented Kalman Filter ------------------------    case 'srukf'        alpha = 1;         % scale factor (UKF parameter)        beta  = 2;         % optimal setting for Gaussian priors (UKF parameter)        kappa = 0;         % optimal for state dimension=2 (UKF parameter)        Sx = chol(Px)';        InfDS.spkfParams = [alpha beta kappa];        [Xh, Sx] = srukf(Xh(:,1), Sx, pNoise, oNoise, y, [], [], InfDS);    %------------------- Square Root Central Difference Kalman Filter ---------------    case 'srcdkf'        InfDS.spkfParams  = sqrt(3);    % scale factor (CDKF parameter h)        Sx = chol(Px)';        [Xh, Sx] = srcdkf(Xh(:,1), Sx, pNoise, oNoise, y, [], [], InfDS); otherwise  error(' Unknown estimator!');end%--- Plot resultsfigure(1); clf;p1 = plot(X(1,:)); hold onp2 = plot(y,'g+');p3 = plot(Xh(1,:),'r'); hold off;legend([p1 p2 p3],'clean','noisy',[ftype ' estimate']);xlabel('time');title('DEMSE3 : Mackey-Glass-30 Chaotic Time Series State Estimation');%--- Calculate mean square estimation errormse = mean((Xh(1,:)-X(1,:)).^2);fprintf('\nMean-square-error (MSE) of estimate : %4.3f\n\n', mse);%--- House keepingremrelpath('../gssm');       % remove relative search path to example GSSM files from MATLABPATHremrelpath('../data');       % remove relative search path to example data files from MATLABPATH

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲资源中文字幕| 欧美制服丝袜第一页| 欧洲精品一区二区| 久久综合九色综合97_久久久| 亚洲精品视频在线看| 国产精品99久久久久久久vr| 欧美男生操女生| 亚洲天天做日日做天天谢日日欢 | 91精品国产欧美一区二区| 91精品国产乱| 国产又粗又猛又爽又黄91精品| 26uuu亚洲婷婷狠狠天堂| 欧美精品一区二区三区视频| 日本高清视频一区二区| 久久精品人人做| 奇米色777欧美一区二区| 色香色香欲天天天影视综合网| 久久久久国产精品人| 欧美午夜片在线观看| 日本一区二区久久| 国产一区二区三区不卡在线观看| 51久久夜色精品国产麻豆| 一区二区三区资源| 99久久国产免费看| 中文字幕av一区二区三区高| 国产乱人伦精品一区二区在线观看| 7777精品伊人久久久大香线蕉| 亚洲国产视频a| 91福利社在线观看| 亚洲手机成人高清视频| 成人av电影在线观看| 国产女人18水真多18精品一级做 | 欧美videos中文字幕| 首页欧美精品中文字幕| 欧美日韩精品专区| 亚洲国产成人精品视频| 欧美体内she精视频| 亚洲精品视频自拍| 在线观看成人小视频| 一区二区三区视频在线观看| 色琪琪一区二区三区亚洲区| 亚洲精品伦理在线| 在线观看视频一区| 亚洲国产日韩精品| 欧美日本一道本在线视频| 亚洲成va人在线观看| 欧美绝品在线观看成人午夜影视| 亚洲成a人v欧美综合天堂| 欧美日韩一区三区| 日韩高清一级片| 日韩女优毛片在线| 国产精选一区二区三区| 国产午夜精品福利| 成人av电影在线| 亚洲美女电影在线| 91福利精品视频| 午夜精品福利一区二区蜜股av | 高清不卡在线观看av| 国产精品无圣光一区二区| 成人免费毛片高清视频| 亚洲色图视频网| 欧美伊人久久大香线蕉综合69| 夜夜精品视频一区二区| 9191国产精品| 狠狠久久亚洲欧美| 日本一区二区免费在线观看视频| 不卡视频免费播放| 亚洲香蕉伊在人在线观| 日韩视频中午一区| 国产成人综合亚洲91猫咪| 国产精品电影院| 在线亚洲免费视频| 日韩高清电影一区| 久久精品日产第一区二区三区高清版 | 久久免费看少妇高潮| 福利电影一区二区三区| 亚洲精品视频在线看| 制服丝袜亚洲精品中文字幕| 国产一区二区在线观看免费| 国产精品久久久久久久浪潮网站| 欧美亚洲综合另类| 日韩国产在线观看| 中文在线免费一区三区高中清不卡| 91久久一区二区| 麻豆91小视频| 亚洲欧洲色图综合| 91精品国产综合久久久蜜臀粉嫩| 国产精品综合二区| 夜夜嗨av一区二区三区网页| 日韩精品一区二区三区swag| 97se亚洲国产综合自在线观| 免费在线一区观看| 国产精品进线69影院| 91精品国产高清一区二区三区| 国产成人一区二区精品非洲| 亚洲国产另类av| 久久精品一区二区三区不卡牛牛| 欧洲精品视频在线观看| 国产一区欧美二区| 亚洲成人一区在线| 国产精品另类一区| 欧美一区二区三区免费大片| 成人黄页毛片网站| 蜜臀av一级做a爰片久久| 国产精品夫妻自拍| 日韩视频在线永久播放| 色又黄又爽网站www久久| 免费在线观看成人| 亚洲人xxxx| 久久人人97超碰com| 欧美精品在线观看一区二区| 不卡的av在线| 国产毛片精品视频| 午夜成人免费视频| 日韩理论片中文av| 久久久久国产精品人| 91麻豆精品国产91久久久久久 | 国产高清精品久久久久| 亚洲不卡一区二区三区| 国产精品欧美综合在线| 日韩精品自拍偷拍| 欧美人伦禁忌dvd放荡欲情| 成人国产在线观看| 国产一区二区三区综合 | 久久精品一区四区| 日韩一区二区在线观看视频播放| 91国产成人在线| 成人国产精品免费观看动漫| 激情都市一区二区| 日本伊人色综合网| 亚洲自拍欧美精品| 亚洲日本va在线观看| 国产精品久久一卡二卡| 久久久久久久久久久久久久久99| 日韩一区二区三区视频在线| 欧美日韩一区国产| 在线观看成人免费视频| 99v久久综合狠狠综合久久| 国产·精品毛片| 国产一区二区三区四区在线观看| 青草国产精品久久久久久| 亚洲国产精品一区二区www在线| 亚洲男人的天堂一区二区| 国产精品久久久久久久午夜片| 国产欧美日本一区二区三区| 精品欧美乱码久久久久久| 日韩一区二区在线观看视频| 日韩一区二区免费在线观看| 欧美日韩成人在线| 欧美色国产精品| 欧美日韩视频专区在线播放| 欧美亚州韩日在线看免费版国语版| 日本黄色一区二区| 91国产成人在线| 欧美午夜精品一区二区三区| 欧美性色aⅴ视频一区日韩精品| 91成人在线观看喷潮| 欧美亚洲综合久久| 欧美日韩国产小视频| 欧美另类videos死尸| 欧美年轻男男videosbes| 欧美蜜桃一区二区三区| 欧美精品777| 日韩欧美高清一区| 欧美成人一区二区三区| 亚洲精品一区二区三区蜜桃下载| 欧美精品一区男女天堂| 久久久国产一区二区三区四区小说 | 久久综合九色综合97婷婷女人 | 日韩视频一区二区三区 | 欧美成人福利视频| 欧美亚洲国产一区二区三区| 国产精品一级黄| 亚洲少妇中出一区| 制服丝袜av成人在线看| 在线看不卡av| 欧美婷婷六月丁香综合色| 欧美精品第一页| 日韩欧美卡一卡二| 国产欧美日韩一区二区三区在线观看| 中文字幕免费一区| 亚洲精品日韩综合观看成人91| 亚洲成a人v欧美综合天堂下载| 美女网站色91| 国产精品一区二区男女羞羞无遮挡 | 精品电影一区二区三区| 国产欧美日韩三级| 亚洲免费观看高清完整版在线 | 天天射综合影视| 蜜臀av一区二区三区| 国产成人在线网站| 91香蕉视频mp4| 678五月天丁香亚洲综合网| 精品国产电影一区二区| 亚洲欧洲精品一区二区三区| 亚洲国产成人高清精品| 黄页视频在线91| 99精品国产99久久久久久白柏| 欧美精选一区二区| 久久久99久久|