亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? demse4.m

?? Matlab toolbox that contains functions of Kalman filter and random system simulation.
?? M
字號:
% DEMSE4  Bearing Only Tracking Example%%   This demonstrates the use of the Sigma-Point Particle Filter on the classic%   HARD bearing only tracking problem.%%   Note : This problem has not been optimised for optimal performance. It is%          simply to demonstrate the use of the SPPF on a tracking problem.%%%   See also%   GSSM_BOT%%   Copyright  (c) Rudolph van der Merwe (2002)%%   This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for%   academic use only (see included license file) and can be obtained by contacting%   rvdmerwe@ece.ogi.edu.  Businesses wishing to obtain a copy of the software should%   contact ericwan@ece.ogi.edu for commercial licensing information.%%   See LICENSE (which should be part of the main toolkit distribution) for more%   detail.%=============================================================================================clc;clear all;fprintf('\nDEMSE4 :  Bearing Only Tracking\n\n');fprintf('A random target trajectory is generated for each run, resulting in varying\n');fprintf('tracking performance.\n\n');fprintf('NOTE : This example has not been optimised for optimal performance.\n');fprintf('It is used simply to demonstrate the use of the different inference\n');fprintf('algorithms on a very hard nonlinear tracking problem.\n\n\n');%--- General setupaddrelpath('../gssm');         % add relative search path to example GSSM files to MATLABPATHaddrelpath('../data');         % add relative search path to example data files to MATLABPATH%--- Initialise GSSMmodel = gssm_bot('init');%--- Generate inference data structureArg.model = model;                                   % embed GSSMArg.type = 'state';                                  % estimation typeArg.tag = 'State estimation for bearings-only tracking problem';  % info tag (not required)InfDS = geninfds(Arg);                               % call generate function%--- Generate estimation process and observation noise sourcesftype = input('Inference algorithm  [ srcdkf / pf / sppf / gspf / gmsppf ] : ','s');  %  set type of inference algorithm (estimator) to use :%--- Generate some data : Initial target state generated according to Gordon, Salmond & Ewing - 1995N = 25;                                              % max. time k=1..NV = feval(model.pNoise.sample, model.pNoise, N);     % generate process noiseW = feval(model.oNoise.sample, model.oNoise, N);     % generate observation noiseX = zeros(InfDS.statedim, N);                        % system state buffery = zeros(InfDS.obsdim,N);                           % system observations bufferbearing_0      = -pi+rand(1)*2*pi;bearing_rate_0 = 0.1*randn(1);range_0        = 0.1*randn(1)+1;range_rate_0   = 0.01*randn(1)-0.1;X(:,1) = [range_0*cos(bearing_0);                       % initial target location in 2D-cartesian space         (range_0 + range_rate_0)*cos(addangle(bearing_0,bearing_rate_0)) - range_0*cos(bearing_0);         range_0*sin(bearing_0);         (range_0 + range_rate_0)*sin(addangle(bearing_0,bearing_rate_0)) - range_0*sin(bearing_0)];y(:,1) = feval(model.hfun, model, X(:,1), W(:,1), []);  % initial observationfor k=2:N,    X(:,k) = feval(model.ffun, model, X(:,k-1), V(:,k-1), []);    y(:,k) = feval(model.hfun, model, X(:,k), W(:,k), []);endtrue_range   = sqrt(X(1,:).^2 + X(3,:).^2);             % calculate range ground truth trajectorytrue_bearing = atan2(X(3,:), X(1,:));                   % calculate bearing ground truth trajectory%--- Setup estimation buffersXh = zeros(InfDS.statedim, N);Sx = eye(InfDS.statedim);range_error   = zeros(1,N);bearing_error = zeros(1,N);pos_error     = zeros(1,N);%--- Determine initial uncertainty in vehicle positionNstat = 10000;Wstat = feval(model.oNoise.sample, model.oNoise, Nstat);bearing_stat      = bearing_0 + sqrt(model.oNoise.cov(1,1))*randn(1,Nstat);bearing_rate_stat = 0.1*randn(1,Nstat);range_stat        = 0.1*randn(1,Nstat)+1;range_rate_stat   = 0.01*randn(1,Nstat)-0.1;Xstat = [range_stat.*cos(bearing_stat);         (range_stat + range_rate_stat).*cos(addangle(bearing_stat,bearing_rate_stat)) - range_stat.*cos(bearing_stat);         range_stat.*sin(bearing_stat);         (range_stat + range_rate_stat).*sin(addangle(bearing_stat,bearing_rate_stat)) - range_stat.*sin(bearing_stat)];Mu0 = mean(Xstat,2);P0  = cov(Xstat');Xh(:,1) = Mu0;                  % initial state distribution : meanSx = chol(P0)';                 % initial state distribution : covariance Cholesky factor%--- Display target trajectory detailfigure(1); clf;p1=plot(X(1,:),X(3,:),'-*'); hold on;p2=plot(X(1,1),X(3,1),'c*');p3=plot(X(1,end),X(3,end),'m*');p4=plot(0,0,'kx','linewidth',2); hold off;legend([p1 p2 p3 p4],'target trajectory','position : k=0',['position : k=' num2str(N)],'observer position',0);xlabel('x');ylabel('y');title('Bearings-Only Tracking : Target Trajectory');figure(2);subplot(211);p11=plot(1:N,true_range,'b-o');xlabel('k');ylabel('range');title('Range Profile');legend([p11],'true');subplot(212);p13=plot(1:N,true_bearing,'b-o'); hold on;p14=plot(1:N,y(1,:),'k+'); hold off;legend([p13 p14],'true bearing','measured bearing');xlabel('time : k');ylabel('bearing : radians');title('Bearing Profile');drawnow%-------------------------------------------------------switch ftypecase {'pf','gspf','gmsppf'}  numParticles = 1000;                        % number of particlesotherwise  numParticles = 200;endbearing_stat      = bearing_0+sqrt(model.oNoise.cov(1,1))*randn(1,numParticles);bearing_rate_stat = 0.1*randn(1,numParticles);range_stat        = 0.1*randn(1,numParticles)+1;range_rate_stat   = 0.01*randn(1,numParticles)-0.1;initialParticles = [range_stat.*cos(bearing_stat);                    (range_stat + range_rate_stat).*cos(addangle(bearing_stat,bearing_rate_stat)) - range_stat.*cos(bearing_stat);                    range_stat.*sin(bearing_stat);                    (range_stat + range_rate_stat).*sin(addangle(bearing_stat,bearing_rate_stat)) - range_stat.*sin(bearing_stat)];initialParticles = Sx*randn(InfDS.statedim,numParticles) + cvecrep(Mu0,numParticles);initialParticlesCov = repmat(Sx,[1 1 numParticles]);  % particle covariances%=================================================================================================================%--- Run estimator on observed data (noisy bearing readings)fprintf('Estimating trajectory...');  switch ftype  %---------------------------------------------------------------------------------------------------------  case 'pf'      [pNoise, oNoise, InfDS] = gensysnoiseds(InfDS, ftype);     % call system noise sources generation function      ParticleFiltDS.N = numParticles;      ParticleFiltDS.particles = initialParticles;      ParticleFiltDS.weights = (1/numParticles)*ones(1,numParticles);      InfDS.resampleThreshold = 1;    % set resample threshold      InfDS.estimateType = 'mean';    % estimate type for Xh      [Xh, ParticleFiltDS] = pf(ParticleFiltDS, pNoise, oNoise, y, [], [], InfDS);  %---------------------------------------------------------------------------------------------------------  case 'gspf'      [pNoise, oNoise, InfDS] = gensysnoiseds(InfDS, ftype);     % call system noise sources generation function      ParticleFiltDS.N = numParticles;      % number of particles      ParticleFiltDS.stateGMM = gmmfit(initialParticles, 5, [0.001 10], 'sqrt');  % fit a 5 component GMM to initial state distribution      InfDS.estimateType = 'mean';    % estimate type for Xh      [Xh, ParticleFiltDS] = gspf(ParticleFiltDS, pNoise, oNoise, y, [], [], InfDS);  %---------------------------------------------------------------------------------------------------------  case 'gmsppf'      [pNoise, oNoise, InfDS] = gensysnoiseds(InfDS, ftype);     % call system noise sources generation function      ParticleFiltDS.N = numParticles;      % number of particles      ParticleFiltDS.stateGMM = gmmfit(initialParticles, 5, [0.001 10], 'sqrt');  % fit a 5 component GMM to initial state distribution      InfDS.estimateType = 'mean';    % estimate type for Xh      InfDS.spkfType = 'srcdkf';      % Type of SPKF to use inside SPPF (note that ParticleFiltDS.particlesCov should comply)      InfDS.spkfParams  = sqrt(3);    % scale factor (CDKF parameter h)      [Xh, ParticleFiltDS] = gmsppf2(ParticleFiltDS, pNoise, oNoise, y, [], [], InfDS);  %---------------------------------------------------------------------------------------------------------  case 'sppf'      [pNoise, oNoise, InfDS] = gensysnoiseds(InfDS, ftype);     % call system noise sources generation function      InfDS.spkfType = 'srcdkf';      % Type of SPKF to use inside SPPF (note that ParticleFiltDS.particlesCov should comply)      InfDS.spkfParams  = sqrt(3);    % scale factor (CDKF parameter h)      InfDS.resampleThreshold = 1;    % set resample threshold      InfDS.estimateType = 'mean';    % estimate type for Xh      [pNoiseGAUS, oNoiseGAUS, foo] = gensysnoiseds(InfDS, InfDS.spkfType); % generate Gaussian system noise sources for internal SPKFs      % build ParticleFilter data structure      ParticleFiltDS.N = numParticles;              % number of particles      ParticleFiltDS.particles = initialParticles;  % initialize particle means      ParticleFiltDS.particlesCov = initialParticlesCov;  % initialize article covariances      ParticleFiltDS.pNoise = pNoiseGAUS;      % embed SPKF noise sources      ParticleFiltDS.oNoise = oNoiseGAUS;      %   "   "       "    "      ParticleFiltDS.weights = cvecrep(1/numParticles,numParticles); % initialize particle weights      [Xh, ParticleFiltDS] = sppf(ParticleFiltDS, pNoise, oNoise, y, [], [], InfDS);  %---------------------------------------------------------------------------------------------------------  case 'asppf'      [pNoise, oNoise, InfDS] = gensysnoiseds(InfDS, ftype);     % call system noise sources generation function      InfDS.spkfType = 'srcdkf';      % Type of SPKF to use inside SPPF (note that ParticleFiltDS.particlesCov should comply)      InfDS.spkfParams  = sqrt(3);    % scale factor (CDKF parameter h)      InfDS.resampleThreshold = 1;    % set resample threshold      InfDS.estimateType = 'mean';    % estimate type for Xh      [pNoiseGAUS, oNoiseGAUS, foo] = gensysnoiseds(InfDS, InfDS.spkfType); % generate Gaussian system noise sources for internal SPKFs      % build ParticleFilter data structure      ParticleFiltDS.N = numParticles;              % number of particles      ParticleFiltDS.particles = initialParticles;  % initialize particle means      ParticleFiltDS.particlesCov = initialParticlesCov;  % initialize article covariances      ParticleFiltDS.pNoise = pNoiseGAUS;      % embed SPKF noise sources      ParticleFiltDS.oNoise = oNoiseGAUS;      %   "   "       "    "      ParticleFiltDS.weights = cvecrep(1/numParticles,numParticles); % initialize particle weights      [Xh, ParticleFiltDS] = asppf(ParticleFiltDS, pNoise, oNoise, y, [], [], InfDS);  %---------------------------------------------------------------------------------------------------------  case 'srcdkf'      [pNoise, oNoise, InfDS] = gensysnoiseds(InfDS, ftype);     % call system noise sources generation function      InfDS.spkfParams  = sqrt(3);    % scale factor (CDKF parameter h)      [Xh, Sx] = srcdkf(Xh(:,1), Sx, pNoise, oNoise, y, [], [], InfDS);  %---------------------------------------------------------------------------------------------------------  case 'srukf'      [pNoise, oNoise, InfDS] = gensysnoiseds(InfDS, ftype);     % call system noise sources generation function      InfDS.spkfParams  = [1 2 0];    % scale factor (CDKF parameter h)      [Xh, Sx] = srukf(Xh(:,1), Sx, pNoise, oNoise, y, [], [], InfDS);  %---------------------------------------------------------------------------------------------------------  otherwise      error([' Unknown inference algorithm type ''' ftype '''']);endfprintf(' done.\n\n');%=================================================================================================================%--- Calculate errorsrange_estimate = sqrt(Xh(1,:).^2 + Xh(3,:).^2);bearing_estimate = atan2(Xh(3,:), Xh(1,:));range_error   =  range_estimate - true_range;bearing_error =  bearing_estimate - true_bearing;pos_error     =  sqrt((Xh([1;3],:)-X([1;3],:)).^2);%--- Display resultsfigure(1); hold on;p5=plot(Xh(1,:),Xh(3,:),'r-o');plot(Xh(1,1),Xh(3,1),'c*');plot(Xh(1,end),Xh(3,end),'m*');legend([p1 p2 p3 p4 p5],'target trajectory','position : k=0',['position : k=' num2str(N)],'observer position','estimated trajectory',0);xlabel('x');ylabel('y');title('Bearings-Only Tracking : Target Trajectory');hold off;figure(2);subplot(211); hold onp12=plot(1:N,range_estimate,'r-');xlabel('k');ylabel('range');title('Range Profile');legend([p11 p12],'true','inferred');hold off;subplot(212); hold onp15=plot(1:N,bearing_estimate,'r-');xlabel('t');ylabel('bearing');title('Bearing Profile')legend([p13 p14 p15],'true','measured','inferred');hold off;%--- House keepingremrelpath('../gssm');       % remove relative search path to example GSSM files from MATLABPATHremrelpath('../data');       % remove relative search path to example data files from MATLABPATH

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
美女一区二区久久| 欧美电影一区二区三区| 久久综合99re88久久爱| 奇米在线7777在线精品| 日韩午夜在线影院| 国产剧情一区二区| 欧美国产一区视频在线观看| k8久久久一区二区三区| 亚洲六月丁香色婷婷综合久久| 91丝袜呻吟高潮美腿白嫩在线观看| ...av二区三区久久精品| 在线观看亚洲a| 日韩精品1区2区3区| 久久综合狠狠综合| 97超碰欧美中文字幕| 亚洲成精国产精品女| 欧美成人精品福利| jizzjizzjizz欧美| 图片区日韩欧美亚洲| 26uuu国产在线精品一区二区| 国产91精品一区二区| 一区二区三区不卡视频在线观看| 欧美精选一区二区| 国产成人自拍在线| 亚洲第一主播视频| 国产午夜精品一区二区三区视频| 69久久99精品久久久久婷婷| 精品一区二区三区不卡| 国产精品不卡一区| 制服丝袜在线91| 成人国产一区二区三区精品| 亚洲午夜免费电影| xnxx国产精品| 欧美性猛交xxxx乱大交退制版| 激情综合色播五月| 亚洲欧美电影院| 欧美va亚洲va香蕉在线| 在线视频一区二区免费| 国产麻豆精品在线观看| 亚洲国产欧美另类丝袜| 国产欧美精品一区二区色综合| 在线欧美一区二区| 国产91丝袜在线播放九色| 午夜一区二区三区视频| 久久久久免费观看| 欧美二区在线观看| 91在线观看免费视频| 国产麻豆日韩欧美久久| 日韩主播视频在线| 亚洲精品国产精华液| 久久精品一区四区| 欧美一卡2卡3卡4卡| 在线影院国内精品| 不卡的av在线播放| 国产精品一线二线三线| 丝袜诱惑制服诱惑色一区在线观看| 欧美激情自拍偷拍| 欧美岛国在线观看| 在线成人免费观看| 欧美无人高清视频在线观看| 成人99免费视频| 国产精品一区二区三区网站| 男男成人高潮片免费网站| 一区二区三区美女视频| 中文字幕在线视频一区| 国产亚洲一本大道中文在线| 欧美大片日本大片免费观看| 欧美国产禁国产网站cc| 欧美v国产在线一区二区三区| 欧美三级在线视频| 在线观看日韩国产| 91美女福利视频| av欧美精品.com| 成人精品一区二区三区中文字幕 | 色婷婷久久综合| 成人蜜臀av电影| 成人精品高清在线| 成人午夜看片网址| 成人毛片老司机大片| 波多野结衣亚洲| 91最新地址在线播放| 91蝌蚪porny九色| 99麻豆久久久国产精品免费优播| 波多野结衣精品在线| 99精品一区二区| 色妹子一区二区| 在线看日本不卡| 欧美日韩大陆在线| 日韩欧美在线不卡| www成人在线观看| 久久久www免费人成精品| 中文字幕欧美一| 美女在线一区二区| 国产精一区二区三区| 成人午夜激情片| 成人sese在线| 欧美在线观看你懂的| 欧美人伦禁忌dvd放荡欲情| 欧美一级二级三级蜜桃| 久久亚洲私人国产精品va媚药| 日本一区二区视频在线观看| 国产精品第13页| 亚洲第四色夜色| 国产一区在线观看视频| 成人国产精品免费观看| 欧美午夜不卡在线观看免费| 日韩欧美在线一区二区三区| 亚洲国产精华液网站w| 一区二区三区色| 精品亚洲国产成人av制服丝袜| 大白屁股一区二区视频| 在线观看日韩av先锋影音电影院| 欧美一区二区三区免费大片| 国产女人18毛片水真多成人如厕| 亚洲人123区| 麻豆极品一区二区三区| 成a人片亚洲日本久久| 欧美日韩一卡二卡三卡| 久久精品视频免费观看| 亚洲综合清纯丝袜自拍| 国产一区二区三区在线观看免费| 一本久久综合亚洲鲁鲁五月天| 91.com在线观看| 国产精品初高中害羞小美女文| 三级欧美韩日大片在线看| 国产精品自拍三区| 欧美日韩视频不卡| 日本一区二区视频在线| 蜜臀va亚洲va欧美va天堂| 97久久精品人人澡人人爽| 日韩精品一区在线观看| 亚洲综合久久av| 成人精品视频网站| 欧美一区二区在线不卡| 亚洲欧美成人一区二区三区| 国产一区二区三区在线观看精品| 欧美三区在线观看| 国产精品久久久久久久久免费樱桃 | 久久99精品久久久久久久久久久久 | 日本欧美一区二区三区乱码| 成人av在线观| 欧美xxx久久| 婷婷开心久久网| 色噜噜夜夜夜综合网| 欧美国产禁国产网站cc| 精久久久久久久久久久| 欧美日韩高清一区二区不卡| 国产精品久久99| 国产精品99久久久久久久vr| 337p亚洲精品色噜噜狠狠| 一个色在线综合| 91在线视频免费观看| 国产日韩v精品一区二区| 久久精品72免费观看| 51午夜精品国产| 亚洲r级在线视频| 欧美亚洲高清一区二区三区不卡| 国产精品色婷婷久久58| 国产成人综合视频| 国产香蕉久久精品综合网| 国产一区欧美日韩| 欧美不卡123| 久草这里只有精品视频| 日韩女优av电影| 蜜芽一区二区三区| 日韩一区二区在线观看| 日韩激情一二三区| 91精品国产免费| 日本亚洲最大的色成网站www| 91精品免费在线| 免费成人在线视频观看| 日韩精品一区二区三区四区视频| 蜜臀av在线播放一区二区三区| 日韩视频一区二区三区| 久久激情五月激情| xf在线a精品一区二区视频网站| 精品一区二区三区久久| 久久久美女艺术照精彩视频福利播放| 精品一区二区三区蜜桃| 国产日韩精品久久久| eeuss鲁片一区二区三区在线观看| 国产精品麻豆久久久| 91色porny蝌蚪| 亚洲成人精品一区| 日韩无一区二区| 国产伦精品一区二区三区视频青涩 | 国产91高潮流白浆在线麻豆| 国产精品国产精品国产专区不片| 不卡一区二区三区四区| 亚洲色图视频网| 欧美视频第二页| 蜜臀久久99精品久久久久宅男| 2021国产精品久久精品| av在线不卡免费看| 一区二区高清在线| 欧美一区二区三区免费大片| 国产精品 欧美精品| 中文字幕欧美一| 欧美精品一二三| 国产精品综合二区|