亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? demse2.m

?? Matlab toolbox that contains functions of Kalman filter and random system simulation.
?? M
字號:
% DEMSE2  Demonstrate state estimation on a simple scalar nonlinear (time variant) problem
%
%   See also
%   GSSM_N1

%   Copyright  (c) Rudolph van der Merwe (2002)
%
%   This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for
%   academic use only (see included license file) and can be obtained by contacting
%   rvdmerwe@ece.ogi.edu.  Businesses wishing to obtain a copy of the software should
%   contact ericwan@ece.ogi.edu for commercial licensing information.
%
%   See LICENSE (which should be part of the main toolkit distribution) for more
%   detail.

%=============================================================================================

clc;
clear all;

fprintf('\nDEMSE2 : This demonstration shows how the ReBEL toolkit is used for simple state estimation\n');
fprintf('         on a scalar nonlinear problem.\n\n');


%--- General setup

addrelpath('../gssm');         % add relative search path to example GSSM files to MATLABPATH
addrelpath('../data');         % add relative search path to example data files to MATLABPATH

%--- Ask the user which inference algorithm to use

ftype = input('Type of estimator [ ekf, ukf, cdkf, srukf, srcdkf, pf, gspf, gmsppf or sppf ] ? ','s');

if ~stringmatch(ftype,{'ekf','cdkf','ukf','srukf','srcdkf','pf','gspf','sppf','gmsppf'})
    error('That estimator/filter type is not recognized.');
end

number_of_runs = input('Number of independent runs ? ');


%--- Initialise GSSM model from external system description script.

model = gssm_n1('init');

Arg.type = 'state';                                  % inference type (state estimation)
Arg.tag = 'State estimation for GSSM_N1 system.';    % arbitrary ID tag
Arg.model = model;                                   % GSSM data structure of external system
Arg.algorithm = ftype;                               % set inference algorithm to be used

InfDS = geninfds(Arg);                               % Create inference data structure and
[pNoise, oNoise, InfDS] = gensysnoiseds(InfDS,ftype);       % generate process and observation noise sources


%--- Loop over number of independent runs

for k=1:number_of_runs

  randn('state',sum(100*clock));          % stir the pot... shuffle the deck :-)
  rand('state',sum(100*clock));

  %--- Generate some data

  N  = 60;                                                % number of datapoints
  X  = zeros(model.statedim,N);                           % state data buffer
  y  = zeros(model.obsdim,N);                             % observation data buffer

  pnoise = feval(model.pNoise.sample, model.pNoise, N);   % generate process noise
  onoise = feval(model.oNoise.sample, model.oNoise, N);   % generate observation noise

  X(1) = 1;                                               % initial state
  y(1) = feval(model.hfun, model, X(1), onoise(1), 1);    % observation of initial state
  for j=2:N,
    X(j) = feval(model.ffun, model, X(:,j-1), pnoise(j-1), j-1);
    y(j) = feval(model.hfun, model, X(:,j), onoise(j), j);
  end

  U1 = [0:N-1];
  U2 = [1:N];

  %--- Setup runtime buffers

  Xh = zeros(InfDS.statedim,N);          % state estimation buffer
  Xh(:,1) = 1;                           % initial estimate of state E[X(0)]
  Px = 3/4*eye(InfDS.statedim);          % initial state covariance

  %--- Call inference algorithm / estimator

  switch ftype


    %------------------- Extended Kalman Filter ------------------------------------
    case 'ekf'

        [Xh, Px] = ekf(Xh(:,1), Px, pNoise, oNoise, y, U1, U2, InfDS);


    %------------------- Unscented Kalman Filter -----------------------------------
    case 'ukf'

        alpha = 1;         % scale factor (UKF parameter)
        beta  = 2;         % optimal setting for Gaussian priors (UKF parameter)
        kappa = 0;         % optimal for state dimension=2 (UKF parameter)

        InfDS.spkfParams = [alpha beta kappa];

        [Xh, Px] = ukf(Xh(:,1), Px, pNoise, oNoise, y, U1, U2, InfDS);


    %------------------- Central Difference Kalman Filter ---------------------------
    case 'cdkf'

        InfDS.spkfParams = sqrt(3);    % scale factor (CDKF parameter h)

        [Xh, Px] = cdkf(Xh(:,1), Px, pNoise, oNoise, y, U1, U2, InfDS);


    %------------------- Square Root Unscented Kalman Filter ------------------------
    case 'srukf'

        alpha = 1;         % scale factor (UKF parameter)
        beta  = 2;         % optimal setting for Gaussian priors (UKF parameter)
        kappa = 0;         % optimal for state dimension=2 (UKF parameter)

        Sx = chol(Px)';

        InfDS.spkfParams = [alpha beta kappa];

        [Xh, Sx] = srukf(Xh(:,1), Sx, pNoise, oNoise, y, U1, U2, InfDS);


    %------------------- Square Root Central Difference Kalman Filter ---------------
    case 'srcdkf'

        InfDS.spkfParams  = sqrt(3);    % scale factor (CDKF parameter h)

        Sx = chol(Px)';

        [Xh, Sx] = srcdkf(Xh(:,1), Sx, pNoise, oNoise, y, U1, U2, InfDS);


    %------------------- Generic Particle Filter (a.k.a Bootstrap-filter of CONDENSATION -----------
    case 'pf'

        M = 200;                             % number of particles
        ParticleFiltDS.N = M;
        ParticleFiltDS.particles = randn(InfDS.statedim,M)+cvecrep(Xh(:,1),M);  % initialize particles
        ParticleFiltDS.weights = cvecrep(1/M,M); % initialize weights

        InfDS.resampleThreshold = 0.5;    % set resample threshold
        InfDS.estimateType = 'mean';      % estimate type for Xh

        [Xh, ParticleFiltDS] = pf(ParticleFiltDS, pNoise, oNoise, y, U1, U2, InfDS);

    %------------------- Gaussian-Sum Particle Filter ---------------------------------------------
    case 'gspf'

        M = 200;                             % number of particles
        ParticleFiltDS.N = M;

        initialParticles = randn(InfDS.statedim,M)+cvecrep(Xh(:,1),M);  % initialize particles

        ParticleFiltDS.stateGMM = gmmfit(initialParticles, 2, [0.001 10], 'sqrt');  % fit a 3 component GMM to initial state distribution

        InfDS.estimateType = 'mean';      % estimate type for Xh

        [Xh, ParticleFiltDS] = gspf(ParticleFiltDS, pNoise, oNoise, y, U1, U2, InfDS);

    %------------------- Sigma-Point Bayes Filter ---------------------------------------------
    case 'gmsppf'

      M = 200;
      ParticleFiltDS.N = M;            % number of particles

      initialParticles = randn(InfDS.statedim,M)+cvecrep(Xh(:,1),M);  % initialize particles

      tempCov = zeros(1,1,2); tempCov(:,:,1) = sqrt(2); tempCov(:,:,2)=1;

      ParticleFiltDS.stateGMM = gmmfit(initialParticles, 2, [0.001 10], 'sqrt');  % fit a 3 component GMM to initial state distribution

      InfDS.estimateType = 'mean';    % estimate type for Xh

      InfDS.spkfType = 'srcdkf';      % Type of SPKF to use inside SPPF (note that ParticleFiltDS.particlesCov should comply)
      InfDS.spkfParams  = sqrt(3);    % scale factor (CDKF parameter h)

      Arg.type='gmm';
      Arg.cov_type='sqrt';
      Arg.dim=model.Vdim;
      Arg.M = 2;
      Arg.mu = cvecrep(model.pNoise.mu,Arg.M);
      Arg.cov = zeros(Arg.dim,Arg.dim,Arg.M);
      Arg.cov(:,:,1) = 2*model.pNoise.cov(:,:,1);
      Arg.cov(:,:,2) = 0.5*model.pNoise.cov(:,:,1);
      Arg.weights = [0.5 0.5];
      pNoise = gennoiseds(Arg);

      [Xh, ParticleFiltDS] = gmsppf(ParticleFiltDS, pNoise, oNoise, y, U1, U2, InfDS);



    %------------------- Sigma-Point Particle Filter -----------------------------------------------
    case 'sppf'

        M = 200;                             % number of particles
        ParticleFiltDS.N = M;
        ParticleFiltDS.particles  = cvecrep(Xh(:,1),M);  % initialize particle means
        ParticleFiltDS.particlesCov = repmat(eye(InfDS.statedim),[1 1 M]);       % particle covariances

        pNoiseGAUS.cov = sqrt(2*3/4);
        oNoiseGAUS.cov = sqrt(1e-1);

        [pNoiseGAUS, oNoiseGAUS, foo] = gensysnoiseds(InfDS,'srcdkf');

        ParticleFiltDS.pNoise = pNoiseGAUS;
        ParticleFiltDS.oNoise = oNoiseGAUS;
        ParticleFiltDS.weights = cvecrep(1/M,M); % initialize weights

        InfDS.spkfType = 'srcdkf';         % Type of SPKF to use (note that ParticleFiltDS.particlesP should comply)
        InfDS.spkfParams = [sqrt(3)];
        InfDS.resampleThreshold = 0.5;    % set resample threshold
        InfDS.estimateType = 'mean';      % estimate type for Xh

        [Xh, ParticleFiltDS] = sppf(ParticleFiltDS, pNoise, oNoise, y, U1, U2, InfDS);

  end

  %--- Plot results

  figure(1); clf;
  p1 = plot(X(1,:)); hold on
  p2 = plot(y,'g+');
  p3 = plot(Xh(1,:),'r'); hold off;
  legend([p1 p2 p3],'clean','noisy',[ftype ' estimate']);
  xlabel('time');
  title('DEMSE2 : Nonlinear Time Variant State Estimation (non Gaussian noise)');

  drawnow

  %--- Calculate mean square estimation error

  rmse(k) = sqrt(mean((Xh(1,2:end)-X(1,2:end)).^2));
  fprintf('\n %d:%d  Root-mean-square-error (RMSE) of estimate : %4.3f\n', k, number_of_runs, rmse(k));

end

mean_RMSE = mean(rmse);

fprintf('\n Mean RMSE : %4.3f\n\n',mean_RMSE);



%--- House keeping

remrelpath('../gssm');       % remove relative search path to example GSSM files from MATLABPATH
remrelpath('../data');       % remove relative search path to example data files from MATLABPATH

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲一区欧美一区| 久久天堂av综合合色蜜桃网| 美女诱惑一区二区| 欧美日韩一级二级三级| 亚瑟在线精品视频| 6080亚洲精品一区二区| 国内精品自线一区二区三区视频| 精品久久免费看| 成人精品一区二区三区四区| 亚洲欧美欧美一区二区三区| 在线亚洲精品福利网址导航| 日韩制服丝袜先锋影音| 欧美精品一区二区三| 成人免费观看视频| 亚洲综合小说图片| 欧美电视剧在线观看完整版| 国产高清无密码一区二区三区| 中文av一区二区| 欧美系列在线观看| 国产在线精品一区在线观看麻豆| 国产精品午夜在线| 欧美人狂配大交3d怪物一区| 国产一区二区三区最好精华液| 日本一区二区动态图| 欧美亚洲一区二区在线观看| 激情偷乱视频一区二区三区| 中文字幕视频一区| 欧美一区二区三区白人| 成人免费黄色在线| 免费在线观看不卡| 成人欧美一区二区三区黑人麻豆 | 91精品国产品国语在线不卡| 国内精品久久久久影院色| 亚洲欧美色综合| 精品国产免费久久| 欧美在线观看你懂的| 国产成人午夜片在线观看高清观看| 一区二区三区四区精品在线视频| 欧美成人精精品一区二区频| 91麻豆精品在线观看| 久久91精品国产91久久小草| 一区二区三区在线观看国产 | 精品无码三级在线观看视频| 日韩毛片在线免费观看| 精品少妇一区二区三区在线视频| 色婷婷av久久久久久久| 国产麻豆精品久久一二三| 天天综合色天天综合色h| 成人欧美一区二区三区小说 | 激情伊人五月天久久综合| 《视频一区视频二区| www激情久久| 欧美三级电影在线看| eeuss鲁片一区二区三区| 精品无码三级在线观看视频| 香蕉成人啪国产精品视频综合网| 国产精品久久夜| 国产视频一区不卡| 日韩欧美国产一二三区| 欧美日韩视频一区二区| 91美女视频网站| 成人福利视频在线| 国产东北露脸精品视频| 奇米精品一区二区三区在线观看| 亚洲激情欧美激情| 亚洲码国产岛国毛片在线| ●精品国产综合乱码久久久久| 国产女人18毛片水真多成人如厕| 日韩写真欧美这视频| 777亚洲妇女| 69堂亚洲精品首页| 欧美日韩精品欧美日韩精品一综合| 91久久精品国产91性色tv | 国产99一区视频免费| 精品一区二区三区影院在线午夜| 热久久国产精品| 三级亚洲高清视频| 日韩成人午夜电影| 毛片av一区二区三区| 蜜桃视频一区二区三区| 蜜桃久久久久久| 久久精品国产**网站演员| 精品系列免费在线观看| 国精产品一区一区三区mba桃花| 精品一二线国产| 国产高清精品久久久久| 成人黄色综合网站| 91美女视频网站| 欧美日韩国产在线观看| 欧美疯狂性受xxxxx喷水图片| 4438x亚洲最大成人网| 日韩一区二区在线观看视频| 精品成人一区二区三区四区| 久久精品视频一区二区三区| 国产精品丝袜91| 亚洲在线一区二区三区| 日本视频中文字幕一区二区三区| 精品一二三四在线| 成人美女视频在线观看| 在线一区二区三区四区| 欧美一区二区三区白人| 国产欧美一区二区精品性色超碰 | 日韩欧美视频在线| 国产欧美一区视频| 亚洲综合一区在线| 美女视频网站黄色亚洲| 国产91精品一区二区麻豆网站| 91免费版pro下载短视频| 欧美日韩午夜影院| 久久久777精品电影网影网| ...av二区三区久久精品| 香蕉加勒比综合久久| 国产精品中文字幕日韩精品| 色香蕉成人二区免费| 日韩亚洲欧美在线| 成人免费在线观看入口| 日本亚洲天堂网| eeuss鲁片一区二区三区在线观看| 欧美色电影在线| 日本一区二区视频在线| 亚洲国产日韩一区二区| 国产精品一级二级三级| 欧美日韩一区 二区 三区 久久精品| 26uuu亚洲综合色欧美 | 不卡av在线网| 日韩亚洲欧美中文三级| 中文字幕第一区综合| 日本在线不卡一区| 一本大道综合伊人精品热热| 精品国产乱码久久久久久久| 国产精品影音先锋| 欧美日韩一区 二区 三区 久久精品| 久久香蕉国产线看观看99| 亚洲夂夂婷婷色拍ww47| 国产精品88888| 欧美一区二区美女| 亚洲制服丝袜av| 国产成+人+日韩+欧美+亚洲| 欧美一卡在线观看| 亚洲一区二区三区四区在线免费观看 | 国产精品污网站| 欧美aa在线视频| 欧美午夜精品免费| 亚洲欧美日韩电影| 高清久久久久久| 精品剧情在线观看| 日韩精品亚洲一区| 色综合一个色综合亚洲| 久久精品一区二区三区不卡| 日本va欧美va瓶| 在线不卡中文字幕播放| 一区二区三区**美女毛片| 风间由美一区二区av101| 久久久亚洲高清| 久久国产尿小便嘘嘘| 在线不卡a资源高清| 亚洲成人综合视频| 在线视频国内一区二区| 亚洲欧美成aⅴ人在线观看| 粉嫩13p一区二区三区| 久久久久久久久久久久久久久99| 美女视频免费一区| 日韩欧美在线网站| 精品中文字幕一区二区小辣椒| 在线播放国产精品二区一二区四区| 一区二区三区中文字幕| 色美美综合视频| 亚洲在线视频网站| 欧美视频一区在线观看| 亚洲国产成人高清精品| 欧美日韩成人高清| 热久久免费视频| 欧美一卡二卡在线| 久久er精品视频| 久久久亚洲国产美女国产盗摄| 国产乱码精品1区2区3区| 国产亚洲一本大道中文在线| 成人一区在线观看| 亚洲欧洲精品天堂一级| 91国偷自产一区二区开放时间 | 欧美视频精品在线| 日韩av一二三| 欧美成人精品3d动漫h| 国产精品综合久久| 中文字幕一区在线观看视频| 99国产精品国产精品久久| 亚洲精品伦理在线| 亚洲精品你懂的| 91国模大尺度私拍在线视频| 亚洲v中文字幕| 日韩天堂在线观看| 国产成人在线影院| 亚洲人妖av一区二区| 欧美日韩久久一区二区| 蜜桃一区二区三区四区| 国产日韩欧美综合在线| 日本高清视频一区二区| 日产国产高清一区二区三区 | 国产精品久久久久久妇女6080| 在线视频你懂得一区|