亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? gssm_mackey_glass.m

?? Matlab toolbox that contains functions of Kalman filter and random system simulation.
?? M
字號:
% GSSM_MACKEY_GLASS  Generalized state space model for Mackey-Glass chaotic time series%%  The Mackey-Glass time-delay differential equation is defined by%%            dx(t)/dt = 0.2x(t-tau)/(1+x(t-tau)^10) - 0.1x(t)%%  When x(0) = 1.2 and tau = 17, we have a non-periodic and non-convergent time series that%  is very sensitive to initial conditions. (We assume x(t) = 0 when t < 0.)%%  We assume that the chaotic time series is generated with by a nonlinear autoregressive%  model where the nonlinear functional unit is a feedforward neural network. We use a%  tap length of 6 and a 6-4-1 MLP neural network with hyperbolic tangent activation functions%  in the hidden layer and a linear output activation.%%   Copyright  (c) Rudolph van der Merwe (2002)%%   This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for%   academic use only (see included license file) and can be obtained by contacting%   rvdmerwe@ece.ogi.edu.  Businesses wishing to obtain a copy of the software should%   contact ericwan@ece.ogi.edu for commercial licensing information.%%   See LICENSE (which should be part of the main toolkit distribution) for more%   detail.%===============================================================================================function [varargout] = model_interface(func, varargin)  switch func    %--- Initialize GSSM data structure --------------------------------------------------------    case 'init'      model = init(varargin);        error(consistent(model,'gssm'));               % check consistentency of initialized model      varargout{1} = model;    %--------------------------------------------------------------------------------------------    otherwise      error(['Function ''' func ''' not supported.']);  end%===============================================================================================function model = init(init_args)  load mg30_6-4-1_model.mat;            % load ReBEL neural network model from Matlab MAT file                                        % This loads a NeuralNetDS data structure, i.e.                                        % NeuralNet.type = 'NeuralNetDS'                                        % NeuralNet.subtype = 'MLP'                                        % NeuralNet.nodes   : MLP structure descriptor vector                                        % NeuralNet.olType  : output layer type                                        % NeuralNet.weights : neural network parameters                                        % NeuralNet.pnVar   : inovation variance  model.type = 'gssm';                  % object type = generalized state space model  model.tag  = 'GSSM_Mackey-Glas-30';   % ID tag  model.ffun_type = 'nla';              % state transition function type  : nonlinear with adative noise  model.hfun_type = 'lti';              % state observation function type : linear time invariant  model.ffun      = @ffun;              % functionhandle to FFUN  model.hfun      = @hfun;              % functionhandle to HFUN  model.linearize = @linearize;         % functionhandle to LINEARIZE  model.setparams = @setparams;         % functionhandle to SETPARAMS  model.likelihood = @likelihood;       % functionhandle to LIKELIHOOD  model.prior = @prior;                 % functionhandle to PRIOR function  model.statedim   = 6;                 % state dimension  model.obsdim     = 1;                 % observation dimension  model.paramdim   = length(NeuralNet.weights);   % parameter dimension   [should equal 6*4+4 + 4*1 + 1 ]  model.U1dim      = 0;                 % exogenous control input 1 dimension  model.U2dim      = 0;                 % exogenous control input 2 dimension  model.Vdim       = 1;                 % process noise dimension  model.Ndim       = 1;                 % observation noise dimension  Arg.type = 'gaussian';                % process noise source  Arg.cov_type = 'full';  Arg.dim = model.Vdim;  Arg.mu = 0;  Arg.cov  = NeuralNet.pnVar;                      % process noise variance  model.pNoise = gennoiseds(Arg);       % process noise : zero mean white Gaussian noise  Arg.type = 'gaussian';  Arg.cov_type = 'full';  Arg.dim = model.Ndim;  Arg.mu = 0;  Arg.cov  = 1;                           % This will be set in the main program, depending on the experiment  model.oNoise = gennoiseds(Arg);  model.params = zeros(model.paramdim,1);  % setup model parameter vector buffer (this is required by ReBEL)  % Problem/model specific parameters are saved here to speed up subsequent access to these values. One can also  % just save the whole neural network data structure, i.e. model.NeuralNetwork = NeuralNetwork, but this adds another  % layer of dereferencing, which will slow down the code. This is up to the user to decide.  model.nodes = NeuralNet.nodes;  model.olType = NeuralNet.olType;  model.trueWeights = NeuralNet.weights;  % pre-allocate parameter buffers  [model.W1, model.B1, model.W2, model.B2] = mlpunpack(model.nodes, model.trueWeights);  % Generate NN parameter devectorizing indexes to allow for self-contained 'setparams' function. This  % speeds up the code for parameter and joint estimation  [model.idxW1, model.idxB1, model.idxW2, model.idxB2] = mlpindexgen(model.nodes);  % Call setparam function (required)  model = setparams(model, model.trueWeights, 1:model.paramdim);    % set/store the model parameters%===============================================================================================function model = setparams(model, params, paramIdxVec)  switch nargin   case 2     model.params = params;   case 3     model.params(paramIdxVec) = params;  end  % Unpack ReBEL MLP Neural Net parameters 'inline'. This can also be accomplished with a call  % to 'mlpunpack', but this way speeds up the code.  tparams = model.params;  model.W1(:) = tparams(model.idxW1);  model.B1    = tparams(model.idxB1);  model.W2(:) = tparams(model.idxW2);  model.B2    = tparams(model.idxB2);%===============================================================================================function new_state = ffun(model, state, V, U1)  nov = size(state,2);  new_state = zeros(model.statedim,nov);  % direct implementation of ReBEL MLP neural network call ... 'nnet2' can also be called, but this is faster  new_state(1,:) = model.W2 * tanh(model.W1*state + cvecrep(model.B1,nov)) + cvecrep(model.B2,nov);  new_state(2:end,:) = state(1:end-1,:);  if ~isempty(V)    new_state(1,:) = new_state(1,:) + V(1,:);  end%===============================================================================================function observ = hfun(model, state, N, U2)  observ = state(1,:);  if ~isempty(N)    observ = state(1,:) + N(1,:);  end%===============================================================================================function tranprior = prior(model, nextstate, state, U1, pNoiseDS)  X = nextstate - ffun(model, state, [], U1);  tranprior = feval(pNoiseDS.likelihood, pNoiseDS, X(1,:));%===============================================================================================function llh = likelihood(model, obs, state, U2, oNoiseDS)  X = obs - hfun(model, state, [], U2);  llh = feval(oNoiseDS.likelihood, oNoiseDS, X);%===============================================================================================function out = linearize(model, state, V, N, U1, U2, term, index_vector)  if (nargin<7)    error('[ linearize ] Not enough input arguments!');  end  %--------------------------------------------------------------------------------------  switch (term)    case 'A'      %%%========================================================      %%%             Calculate A = df/dstate      %%%========================================================      A=zeros(model.statedim);                                          % quick init to zeros      A(2:model.statedim,1:model.statedim-1) = eye(model.statedim-1);      A(1,1:model.statedim) = mlpjacobian('dydx', model.olType, model.nodes, state, model.W1, model.B1, model.W2, model.B2);      out = A;    case 'B'      %%%========================================================      %%%             Calculate B = df/dU1      %%%========================================================      out = [];    case 'C'      %%%========================================================      %%%             Calculate C = dh/dx      %%%========================================================      C = zeros(model.obsdim, model.statedim);      C(1,1) = 1;      out = C;   case 'D'      %%%========================================================      %%%             Calculate D = dh/dU2      %%%========================================================      out = [];    case 'G'      %%%========================================================      %%%             Calculate G = df/dv      %%%========================================================      G = zeros(model.statedim,1);      G(1,1) = 1;      out = G;    case 'H'      %%%========================================================      %%%             Calculate H = dh/dn      %%%========================================================      H = zeros(model.obsdim,1);      H(1,1) = 1;      out = H;    case 'JFW'      %%%========================================================      %%%             Calculate  = dffun/dparameters      %%%========================================================      JFW = zeros(model.statedim, model.paramdim);      JFW(1,:) = mlpjacobian('dydw', model.olType, model.nodes, state, model.W1, model.B1, model.W2, model.B2);      out = JFW;    case 'JHW'      %%%========================================================      %%%             Calculate  = dhfun/dparameters      %%%========================================================      out = zeros(model.obsdim,model.paramdim);    otherwise      error('[ linearize ] Invalid model term requested!');  end  if (nargin==8), out = out(:,index_vector); end  %--------------------------------------------------------------------------------------

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩欧美成人一区| 亚洲女与黑人做爰| 欧美www视频| 在线电影欧美成精品| 色综合天天综合网天天看片| 大桥未久av一区二区三区中文| 精品一区二区在线观看| 久久精品国产第一区二区三区| 秋霞国产午夜精品免费视频| 日本sm残虐另类| 免费久久99精品国产| 日韩av电影一区| 免费观看久久久4p| 久久国产精品72免费观看| 另类中文字幕网| 久久精品av麻豆的观看方式| 玖玖九九国产精品| 国内精品视频一区二区三区八戒 | 国产一区二区h| 国产乱码精品1区2区3区| 国产传媒久久文化传媒| eeuss影院一区二区三区| 99精品久久免费看蜜臀剧情介绍| 99精品久久久久久| 欧美在线免费播放| 6080国产精品一区二区| 欧美不卡一二三| 国产欧美一区视频| 亚洲三级久久久| 日韩精品免费视频人成| 久久国产精品一区二区| 国产成a人亚洲| 色94色欧美sute亚洲线路一久| 色噜噜狠狠成人网p站| 欧美乱妇20p| 久久精品一区四区| 亚洲美女区一区| 蜜桃av噜噜一区| 成人精品鲁一区一区二区| 在线观看日韩精品| 欧美哺乳videos| 最新国产成人在线观看| 三级一区在线视频先锋| 国产在线乱码一区二区三区| 99精品久久只有精品| 欧美一区二区三区视频免费 | 久久免费美女视频| 亚洲美女区一区| 极品少妇一区二区三区精品视频| 成人aa视频在线观看| 欧美日韩精品福利| 久久久亚洲高清| 亚洲综合视频网| 国产一区二区福利视频| 欧美在线一区二区| 久久影院电视剧免费观看| 亚洲免费观看高清完整版在线 | 97久久超碰国产精品| 91精品国产综合久久国产大片 | 免费观看成人鲁鲁鲁鲁鲁视频| 成人午夜精品在线| 欧美久久久一区| 亚洲欧洲国产日韩| 老汉av免费一区二区三区| 色爱区综合激月婷婷| 国产日韩欧美精品电影三级在线| 亚洲一区二区三区小说| 国产成人午夜精品影院观看视频| 欧美日韩一区二区三区不卡| 久久精品视频一区| 青青草精品视频| 91传媒视频在线播放| 国产偷国产偷精品高清尤物| 首页国产丝袜综合| 91在线无精精品入口| 337p粉嫩大胆色噜噜噜噜亚洲 | 秋霞午夜av一区二区三区| 99re8在线精品视频免费播放| 日韩欧美高清dvd碟片| 亚洲一区二区三区不卡国产欧美| 丁香六月久久综合狠狠色| 日韩精品中午字幕| 五月激情丁香一区二区三区| 一本久久a久久精品亚洲| 久久亚区不卡日本| 久久精品免费看| 欧美精品色综合| 一区二区三区国产精华| av爱爱亚洲一区| 国产欧美日韩久久| 国产呦萝稀缺另类资源| 欧美一区二区三区四区在线观看| 亚洲高清免费观看 | 日本高清视频一区二区| 欧美国产精品一区二区| 久久精品99国产精品日本| 欧美一区二区三区白人 | 欧美日韩亚洲综合在线 欧美亚洲特黄一级| 久久久精品免费观看| 精品一区二区三区的国产在线播放| 欧美日韩一级黄| 亚洲一区二区免费视频| 欧美色综合天天久久综合精品| 综合婷婷亚洲小说| 99国产精品一区| 亚洲视频在线观看三级| 91免费看视频| 亚洲精品一二三| 日本韩国视频一区二区| 亚洲激情在线激情| 在线精品亚洲一区二区不卡| 亚洲激情校园春色| 欧美性一二三区| 日韩成人免费电影| 精品久久久久久久久久久久久久久久久| 日本欧美久久久久免费播放网| 欧美精品色一区二区三区| 麻豆中文一区二区| 日韩一级视频免费观看在线| 久久99久久久久| 久久精品夜色噜噜亚洲aⅴ| 国产综合久久久久影院| 国产亚洲午夜高清国产拍精品| 国产成人在线网站| 亚洲欧洲精品一区二区三区不卡| 9色porny自拍视频一区二区| 亚洲男人的天堂在线aⅴ视频| 在线一区二区三区| 免费看日韩精品| 国产亚洲欧美日韩在线一区| 成人av电影观看| 亚洲综合一二三区| 欧美一区二区精品在线| 国产精品66部| 亚洲一区在线播放| 欧美xxxx在线观看| 成人永久aaa| 一区二区三区在线免费视频| 欧美日韩高清一区二区三区| 美女视频黄 久久| 国产日本一区二区| 色av一区二区| 精品在线视频一区| 亚洲欧美在线高清| 51精品久久久久久久蜜臀| 国产一区二区三区在线观看免费| 国产精品成人免费| 91精品啪在线观看国产60岁| 欧美一区二区三区性视频| 国产一区二区三区免费在线观看| 椎名由奈av一区二区三区| 3d动漫精品啪啪一区二区竹菊 | 欧美综合天天夜夜久久| 日本免费在线视频不卡一不卡二| 久久精品男人的天堂| 在线观看一区二区精品视频| 日本aⅴ免费视频一区二区三区| 亚洲国产成人一区二区三区| 欧美三级视频在线播放| 国产精品一线二线三线精华| 亚洲欧美aⅴ...| 久久精品一区四区| 欧美丰满美乳xxx高潮www| 成人综合在线视频| 蜜臀久久久99精品久久久久久| 国产精品久久久久久久久图文区| 91精品午夜视频| 91麻豆福利精品推荐| 激情深爱一区二区| 午夜精品久久久久久久久| 国产精品美女视频| 日韩天堂在线观看| 欧美午夜精品一区二区蜜桃| 国产99久久久久久免费看农村| 日韩精品电影在线| 亚洲色图清纯唯美| 精品国产乱码久久久久久老虎 | 国产精品国产精品国产专区不片| 宅男噜噜噜66一区二区66| 95精品视频在线| 国产激情偷乱视频一区二区三区| 婷婷久久综合九色综合绿巨人 | 精品日韩一区二区三区 | 国产三级精品视频| 欧美一二三区在线| 欧美三级资源在线| 91国在线观看| av亚洲产国偷v产偷v自拍| 国产一区二区美女诱惑| 免费在线观看视频一区| 亚洲成人黄色小说| 最新日韩av在线| 亚洲电影中文字幕在线观看| 亚洲天堂久久久久久久| 国产精品一区专区| 精品一区二区三区视频| 视频精品一区二区| 亚洲 欧美综合在线网络| 午夜欧美在线一二页| 在线观看91精品国产麻豆|