亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? rbftrain.m

?? Matlab toolbox that contains functions of Kalman filter and random system simulation.
?? M
字號:
function [net, options] = rbftrain(net, options, x, t)%RBFTRAIN Two stage training of RBF network.%%	Description%	NET = RBFTRAIN(NET, OPTIONS, X, T) uses a  two stage training%	algorithm to set the weights in the RBF model structure NET. Each row%	of X corresponds to one input vector and each row of T contains the%	corresponding target vector. The centres are determined by fitting a%	Gaussian mixture model with circular covariances using the EM%	algorithm through a call to RBFSETBF.  (The mixture model is%	initialised using a small number of iterations of the K-means%	algorithm.) If the activation functions are Gaussians, then the basis%	function widths are then set to the maximum inter-centre squared%	distance.%%	For linear outputs,  the hidden to output weights that give rise to%	the least squares solution can then be determined using the pseudo-%	inverse. For neuroscale outputs, the hidden to output weights are%	determined using the iterative shadow targets algorithm.  Although%	this two stage procedure may not give solutions with as low an error%	as using general  purpose non-linear optimisers, it is much faster.%%	The options vector may have two rows: if this is the case, then the%	second row is passed to RBFSETBF, which allows the user to specify a%	different number iterations for RBF and GMM training. The optional%	parameters to RBFTRAIN have the following interpretations.%%	OPTIONS(1) is set to 1 to display error values during EM training.%%	OPTIONS(2) is a measure of the precision required for the value of%	the weights W at the solution.%%	OPTIONS(3) is a measure of the precision required of the objective%	function at the solution.  Both this and the previous condition must%	be satisfied for termination.%%	OPTIONS(5) is set to 1 if the basis functions parameters should%	remain unchanged; default 0.%%	OPTIONS(6) is set to 1 if the output layer weights should be should%	set using PCA. This is only relevant for Neuroscale outputs; default%	0.%%	OPTIONS(14) is the maximum number of iterations for the shadow%	targets algorithm;  default 100.%%	See also%	RBF, RBFERR, RBFFWD, RBFGRAD, RBFPAK, RBFUNPAK, RBFSETBF%%	Copyright (c) Ian T Nabney (1996-2001)% Check arguments for consistencyswitch net.outfncase 'linear'  errstring = consist(net, 'rbf', x, t);case 'neuroscale'  errstring = consist(net, 'rbf', x);otherwise error(['Unknown output function ', net.outfn]);endif ~isempty(errstring)  error(errstring);end% Allow options to have two rows: if this is the case, then the second row% is passed to rbfsetbfif size(options, 1) == 2  setbfoptions = options(2, :);  options = options(1, :);else  setbfoptions = options;endif(~options(14))  options(14) = 100;end% Do we need to test for termination?test = (options(2) | options(3));% Set up the basis function parameters to model the input data density% unless options(5) is set.if ~(logical(options(5)))  net = rbfsetbf(net, setbfoptions, x);end% Compute the design (or activations) matrix[y, act] = rbffwd(net, x);ndata = size(x, 1);if strcmp(net.outfn, 'neuroscale') & options(6)  % Initialise output layer weights by projecting data with PCA  mu = mean(x);  [pcvals, pcvecs] = pca(x, net.nout);  xproj = (x - ones(ndata, 1)*mu)*pcvecs;  % Now use projected data as targets to compute output layer weights  temp = pinv([act ones(ndata, 1)]) * xproj;  net.w2 = temp(1:net.nhidden, :);  net.b2 = temp(net.nhidden+1, :);  % Propagate again to compute revised outputs  [y, act] = rbffwd(net, x);endswitch net.outfncase 'linear'  % Sum of squares error function in regression model  % Solve for the weights and biases using pseudo-inverse from activations  Phi = [act ones(ndata, 1)];  if ~isfield(net, 'alpha')    % Solve for the weights and biases using left matrix divide    temp = pinv(Phi)*t;  elseif size(net.alpha == [1 1])    % Use normal form equation    hessian = Phi'*Phi + net.alpha*eye(net.nin+1);    temp = pinv(hessian)*(Phi'*t);    else    error('Only scalar alpha allowed');  end  net.w2 = temp(1:net.nhidden, :);  net.b2 = temp(net.nhidden+1, :);case 'neuroscale'  % Use the shadow targets training algorithm  if nargin < 4    % If optional input distances not passed in, then use    % Euclidean distance    x_dist = sqrt(dist2(x, x));  else    x_dist = t;  end  Phi = [act, ones(ndata, 1)];  % Compute the pseudo-inverse of Phi  PhiDag = pinv(Phi);  % Compute y_dist, distances between image points  y_dist = sqrt(dist2(y, y));  % Save old weights so that we can check the termination criterion  wold = netpak(net);  % Compute initial error (stress) value  errold = 0.5*(sum(sum((x_dist - y_dist).^2)));  % Initial value for eta  eta = 0.1;  k_up = 1.2;  k_down = 0.1;  success = 1;  % Force initial gradient calculation  for j = 1:options(14)    if success      % Compute the negative error gradient with respect to network outputs      D = (x_dist - y_dist)./(y_dist+(y_dist==0));      temp = y';      neg_gradient = -2.*sum(kron(D, ones(1, net.nout)) .* ...	(repmat(y, 1, ndata) - repmat((temp(:))', ndata, 1)), 1);      neg_gradient = (reshape(neg_gradient, net.nout, ndata))';    end    % Compute the shadow targets    t = y + eta*neg_gradient;    % Solve for the weights and biases    temp = PhiDag * t;    net.w2 = temp(1:net.nhidden, :);    net.b2 = temp(net.nhidden+1, :);       % Do housekeeping and test for convergence    ynew = rbffwd(net, x);    y_distnew = sqrt(dist2(ynew, ynew));    err = 0.5.*(sum(sum((x_dist-y_distnew).^2)));    if err > errold      success = 0;      % Restore previous weights      net = netunpak(net, wold);      err = errold;      eta = eta * k_down;    else      success = 1;      eta = eta * k_up;      errold = err;      y = ynew;      y_dist = y_distnew;      if test & j > 1	w = netpak(net);	if (max(abs(w - wold)) < options(2) & abs(err-errold) < options(3))	  options(8) = err;	  return;	end      end      wold = netpak(net);    end    if options(1)      fprintf(1, 'Cycle %4d Error %11.6f\n', j, err)    end    if nargout >= 3      errlog(j) = err;    end  end  options(8) = errold;  if (options(1) >= 0)    disp('Warning: Maximum number of iterations has been exceeded');  endotherwise   error(['Unknown output function ', net.outfn]);end

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
成人综合日日夜夜| 99久久精品99国产精品 | 精品国产百合女同互慰| 欧美日本国产一区| 欧美日韩亚州综合| 欧美一区二区三区爱爱| 欧美精品免费视频| 欧美一区二区免费| 欧美va亚洲va香蕉在线| 精品久久人人做人人爰| 精品盗摄一区二区三区| 2024国产精品| 国产精品美女久久久久久| 国产精品久久久久毛片软件| 中文字幕在线不卡一区二区三区| 国产精品成人免费| 午夜久久久影院| 蜜臀精品一区二区三区在线观看| 激情偷乱视频一区二区三区| 国产毛片一区二区| 一本色道久久加勒比精品| 欧美色电影在线| 欧美大胆人体bbbb| 国产精品入口麻豆九色| 综合久久一区二区三区| 美女脱光内衣内裤视频久久网站| 国产盗摄女厕一区二区三区| www.爱久久.com| 欧美色网站导航| 久久色在线观看| 亚洲免费在线看| 极品少妇一区二区| 91视频国产观看| 日韩精品一区二区三区中文精品| 中文字幕在线观看不卡| 日一区二区三区| 99久久久国产精品免费蜜臀| 欧美一区二区三区视频在线观看| 中文子幕无线码一区tr| 日韩成人午夜电影| 99re66热这里只有精品3直播 | 精品电影一区二区三区| 国产精品传媒在线| 精品一区二区三区视频在线观看 | 在线精品视频小说1| 久久久久久一二三区| 亚洲精品一二三| 精品一区二区三区不卡| 欧美亚洲精品一区| 国产精品视频你懂的| 蜜桃视频在线观看一区| 欧美亚洲高清一区| 国产精品久久久久婷婷二区次| 毛片基地黄久久久久久天堂| 91日韩在线专区| 日本一二三不卡| 精品一区二区三区在线观看 | 一本色道久久加勒比精品| www日韩大片| 日韩黄色免费网站| 中文字幕一区二区不卡| 日本不卡免费在线视频| 国产成人免费在线| 日韩午夜中文字幕| 亚洲另类春色校园小说| 成人av中文字幕| 国产色91在线| 成人小视频免费观看| 久久日韩精品一区二区五区| 美腿丝袜亚洲一区| 日韩视频在线永久播放| 免费高清在线一区| 欧美一区二区三区在| 天堂一区二区在线| 欧美一区二区三区四区久久 | 黄色精品一二区| 在线播放中文一区| 青青草国产精品亚洲专区无| 欧美精品日韩综合在线| 天天色图综合网| 日韩三级视频在线看| 日韩和欧美一区二区三区| 欧美丰满少妇xxxbbb| 日韩va欧美va亚洲va久久| 欧美成人国产一区二区| 国产乱国产乱300精品| 欧美激情一区三区| 色悠久久久久综合欧美99| 亚洲午夜精品在线| 欧美一区二区三区在线观看视频| 午夜视黄欧洲亚洲| 久久综合丝袜日本网| av午夜精品一区二区三区| 亚洲精品久久嫩草网站秘色| 欧美天天综合网| 免费高清在线视频一区·| 亚洲国产精品成人久久综合一区| 成人av午夜电影| 成人精品免费网站| 亚洲免费av在线| 欧美高清精品3d| 极品尤物av久久免费看| 综合欧美亚洲日本| 日韩一区二区三区在线| 成人午夜激情片| 亚洲一区二区三区视频在线播放 | 亚洲日本青草视频在线怡红院| 色综合久久综合网欧美综合网| 亚洲午夜影视影院在线观看| 欧美v日韩v国产v| 91浏览器打开| 国产精品一区免费视频| 一区二区三区不卡视频| 久久综合九色综合欧美就去吻 | 日韩精品一级中文字幕精品视频免费观看 | 偷窥少妇高潮呻吟av久久免费| 欧美va在线播放| 欧美亚洲综合在线| 成人精品视频一区| 久久精品国产第一区二区三区| 亚洲色图欧美在线| 精品国产91亚洲一区二区三区婷婷| 成人激情午夜影院| 久久精品国产精品亚洲精品| 亚洲精品久久嫩草网站秘色| 日本一区二区三区dvd视频在线| 欧美日韩午夜在线视频| 91无套直看片红桃| 国产成人午夜电影网| 欧美aaa在线| 天天综合色天天综合色h| 国产精品国产三级国产| 国产校园另类小说区| 精品毛片乱码1区2区3区| 欧美日韩国产123区| 在线观看一区日韩| 日本韩国一区二区三区| 成人18视频在线播放| 国产精品一区二区无线| 久久丁香综合五月国产三级网站| 亚洲国产aⅴ天堂久久| 一区二区三区av电影 | 天天av天天翘天天综合网色鬼国产 | 国产一区二区三区在线观看免费视频| 亚洲一区二区中文在线| 一区二区三区在线免费视频| 国产精品不卡一区二区三区| 国产欧美日韩另类视频免费观看| 欧美不卡一二三| 日韩免费在线观看| 欧美一区二区免费观在线| 欧美一级二级三级乱码| 日韩视频一区二区| 日韩精品一区二区三区蜜臀 | 亚洲自拍偷拍网站| 亚洲黄色录像片| 亚洲成人动漫一区| 奇米亚洲午夜久久精品| 久久av老司机精品网站导航| 麻豆国产精品777777在线| 玖玖九九国产精品| 国产精品一区久久久久| 成人av综合一区| 欧美性大战久久久久久久蜜臀| 91久久线看在观草草青青| 欧美专区亚洲专区| 日韩西西人体444www| 26uuu欧美| 中文字幕一区二区三区四区不卡 | 美女高潮久久久| 国产激情偷乱视频一区二区三区| 丁香婷婷深情五月亚洲| 色综合婷婷久久| 欧美老肥妇做.爰bbww视频| 日韩欧美色综合网站| 久久久久久久久久久久久女国产乱| 中文字幕精品—区二区四季| 亚洲欧美区自拍先锋| 免费亚洲电影在线| 成人网男人的天堂| 欧美日韩免费观看一区三区| 日韩欧美另类在线| 亚洲人精品午夜| 麻豆极品一区二区三区| 不卡的电影网站| 777奇米四色成人影色区| 国产欧美1区2区3区| 亚洲国产日产av| 粉嫩嫩av羞羞动漫久久久| 欧美三级电影网站| 日本一区二区三区电影| 日韩和的一区二区| 91女人视频在线观看| 精品国产自在久精品国产| 一区二区三区不卡视频| 成人中文字幕电影| 日韩一区二区影院| 一区二区激情视频| 99天天综合性| 欧美变态凌虐bdsm|