亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? grtheorytest.m

?? 優(yōu)化程序
?? M
?? 第 1 頁 / 共 2 頁
字號:
        st='semi-';
        E=[E(cEu,1:2), [1:size(E,1)]'];
      otherwise,
        st='not ';
        E=[E(:,1:2), [1:size(E,1)]'];
    end
    grPlot(V,[E,[1:size(E,1)]'],'g','');
    title(['\bf This graph is ' st 'Eulerian'])
  case 12, % grMaxComSu test
    disp('The grMaxComSu test')
    V=[0 0 2;1 1 3;1 0 3;1 -1 4;2 1 1;2 0 2;2 -1 3;3 1 4;...
       3 0 5;3 -1 1;4 0 5]; % vertexes coordinates and weights
    E=[1 2;1 3;1 4;2 3;3 4;2 5;2 6;3 6;3 7;4 7;5 6;6 7;...
       5 8;6 8;6 9;7 9;7 10;8 9;9 10;8 11;9 11;10 11]; % edges
    grPlot(V(:,1:2),E,'g','%d',''); % the initial graph
    title('\bfThe initial graph')
    grPlot(V,E,'g','%d',''); % the initial graph
    title('\bfThe initial graph with weighed vertexes')
    nMS=grMaxComSu(E); % the maximal complete sugraph
    fprintf('Number of vertexes on the maximal complete sugraph = %d\n',...
      length(nMS));
    disp('In a maximal complete sugraph is the vertexes with numbers:');
    fprintf('%d  ',nMS);
    fprintf('\nThe total weight = %d\n',sum(V(nMS,3)));
    nMS=grMaxComSu(E,V(:,3)); % the weightd maximal complete sugraph
    fprintf(['Number of vertexes on the weighed maximal complete sugraph '...
      '= %d\n'],length(nMS));
    disp('In a weighed maximal complete sugraph is the vertexes with numbers:');
    fprintf('%d  ',nMS);
    fprintf('\nThe total weight = %d\n',sum(V(nMS,3)));
  case 13, % grMaxFlows test
    disp('The grMaxFlows test')
    V=[0 0;1 1;1 0;1 -1;2 1;2 0;2 -1;3 1;...
       3 0;3 -1;4 0]; % vertexes coordinates
    E=[1 2 5;1 3 5;1 4 5;2 3 2;3 4 2;2 5 3;...
       2 6 2;3 6 5;3 7 2;4 7 3;5 6 1;6 7 1;...
       5 8 5;6 8 2;6 9 3;7 9 2;7 10 3;8 9 2;...
       9 10 2;8 11 5;9 11 4;10 11 4]; % arrows and weights
    s=1; % the network source
    t=11; % the network sink
    fprintf('The source of the net s=%d\nThe sink of the net t=%d\n',s,t)
    grPlot(V,E,'d','','%d'); % the initial digraph
    title('\bfThe digraph of the net')
    [v,mf]=grMaxFlows(E,s,t); % the maximal flow
    disp('The solution of the maximal flows problem')
    disp('  N arrow       flow')
    fprintf('   %2.0f      %12.8f\n',[[1:length(v)];v'])
    fprintf('The maximal flow =%12.8f\n',mf)
    grPlot(V,[E(:,1:2),v],'d','','%6.4f'); % plot the digraph
    title('\bfThe flows on the arrows')
  case 14, % grMaxMatch test
    disp('The grMaxMatch test')
    V=[0 0;1 1;1 0;1 -1;2 1;2 0;2 -1;3 1;...
       3 0;3 -1;4 0]; % vertexes coordinates
    E=[1 2 5;1 3 5;1 4 5;2 3 2;3 4 2;2 5 3;...
       2 6 2;3 6 5;3 7 2;4 7 3;5 6 1;6 7 1;...
       5 8 5;6 8 2;6 9 3;7 9 2;7 10 3;8 9 2;...
       9 10 2;8 11 5;9 11 4;10 11 4]; % arrows and weights
    grPlot(V,E,'g','','%d'); % the initial graph
    title('\bfThe initial graph with weighed edges')
    nMM=grMaxMatch(E(:,1:2)); % the maximal matching
    fprintf('Number of edges on the maximal matching = %d\n',...
      length(nMM));
    disp('In a maximal matching is the edges with numbers:');
    fprintf('%d  ',nMM);
    fprintf('\nThe total weight = %d\n',sum(E(nMM,3)));
    grPlot(V,E(nMM,:),'g','','%d'); % the maximal matching
    title('\bfThe maximal matching')
    nMM=grMaxMatch(E); % the weighed maximal matching
    fprintf('Number of edges on the weighed maximal matching = %d\n',...
      length(nMM));
    disp('In a weighed maximal matching is the edges with numbers:');
    fprintf('%d  ',nMM);
    fprintf('\nThe total weight = %d\n',sum(E(nMM,3)));
    grPlot(V,E(nMM,:),'g','','%d'); % the weighed maximal matching
    title('\bfThe weighed maximal matching')
  case 15, % grMaxStabSet test
    disp('The grMaxStabSet test')
    V=[0 0 2;1 1 3;1 0 3;1 -1 4;2 1 1;2 0 2;2 -1 3;3 1 4;...
       3 0 5;3 -1 1;4 0 5]; % vertexes coordinates and weights
    E=[1 2;1 3;1 4;2 3;3 4;2 5;2 6;3 6;3 7;4 7;5 6;6 7;...
       5 8;6 8;6 9;7 9;7 10;8 9;9 10;8 11;9 11;10 11]; % edges
    grPlot(V(:,1:2),E,'g','%d',''); % the initial graph
    title('\bfThe initial graph')
    nMS=grMaxStabSet(E); % the maximal stable set
    fprintf('Number of vertexes on the maximal stable set = %d\n',...
      length(nMS));
    disp('In a maximal stable set is the vertexes with numbers:');
    fprintf('%d  ',nMS);
    fprintf('\nThe total weight = %d\n',sum(V(nMS,3)));
    grPlot(V,E,'g','%d',''); % the initial graph
    title('\bfThe initial graph with weighed vertexes')
    nMS=grMaxStabSet(E,V(:,3)); % the weightd maximal stable set
    fprintf(['Number of vertexes on the weighed maximal stable set '...
      '= %d\n'],length(nMS));
    disp('In a weighed maximal stable set is the vertexes with numbers:');
    fprintf('%d  ',nMS);
    fprintf('\nThe total weight = %d\n',sum(V(nMS,3)));
  case 16, % grMinAbsEdgeSet test
    disp('The grMinAbsEdgeSet test')
    V=[0 0;1 1;1 0;1 -1;2 1;2 0;2 -1;3 1;...
       3 0;3 -1;4 0]; % vertexes coordinates
    E=[1 2 5;1 3 5;1 4 5;2 3 2;3 4 2;2 5 3;...
       2 6 2;3 6 5;3 7 2;4 7 3;5 6 1;6 7 1;...
       5 8 5;6 8 2;6 9 3;7 9 2;7 10 3;8 9 4;...
       9 10 5;8 11 5;9 11 4;10 11 4]; % arrows and weights
    grPlot(V,E,'g','','%d'); % the initial graph
    title('\bfThe initial graph with weighed edges')
    nMS=grMinAbsEdgeSet(E(:,1:2)); % the minimal absorbant set of edges
    fprintf('Number of edges on the minimal absorbant set = %d\n',...
      length(nMS));
    disp('In a minimal absorbant set is the edges with numbers:');
    fprintf('%d  ',nMS);
    fprintf('\nThe total weight = %d\n',sum(E(nMS,3)));
    grPlot(V,E(nMS,:),'g','','%d'); % the minimal absorbant set of edges
    title('\bfThe minimal absorbant set of edges')
    nMS=grMinAbsEdgeSet(E); % the minimal weighed absorbant set of edges
    fprintf('Number of edges on the minimal weighed absorbant set = %d\n',...
      length(nMS));
    disp('In a minimal weighed absorbant set is the edges with numbers:');
    fprintf('%d  ',nMS);
    fprintf('\nThe total weight = %d\n',sum(E(nMS,3)));
    grPlot(V,E(nMS,:),'g','','%d'); % the minimal weighed absorbant set of edges
    title('\bfThe minimal weighed absorbant set of edges')
  case 17, % grMinAbsVerSet test
    disp('The grMinAbsVerSet test')
    V=[0 0 2;1 1 3;1 0 3;1 -1 4;2 1 1;2 0 2;2 -1 3;3 1 4;...
       3 0 5;3 -1 1;4 0 5]; % vertexes coordinates and weights
    E=[1 2;1 3;1 4;2 3;3 4;2 5;2 6;3 6;3 7;4 7;5 6;6 7;...
       5 8;6 8;6 9;7 9;7 10;8 9;9 10;8 11;9 11;10 11]; % edges
    grPlot(V(:,1:2),E,'g','%d',''); % the initial graph
    title('\bfThe initial graph')
    grPlot(V,E,'g','%d',''); % the initial graph
    title('\bfThe initial graph with weighed vertexes')
    nMS=grMinAbsVerSet(E); % the minimal absorbant set of vertexes
    fprintf('Number of vertexes on the minimal absorbant set = %d\n',...
      length(nMS));
    disp('In a minimal absorbant set is the vertexes with numbers:');
    fprintf('%d  ',nMS);
    fprintf('\nThe total weight = %d\n',sum(V(nMS,3)));
    nMS=grMinAbsVerSet(E,V(:,3)); % the weightd minimal absorbant set of vertexes
    fprintf(['Number of vertexes on the weighed minimal absorbant set '...
      '= %d\n'],length(nMS));
    disp('In a weighed minimal absorbant set is the vertexes with numbers:');
    fprintf('%d  ',nMS);
    fprintf('\nThe total weight = %d\n',sum(V(nMS,3)));
  case 18, % grMinCutSet test
    disp('The grMinCutSet test')
    V=[0 0;1 1;1 0;1 -1;2 1;2 0;2 -1;3 1;...
       3 0;3 -1;4 0]; % vertexes coordinates
    E=[1 2 5;1 3 5;1 4 5;2 3 2;3 4 2;2 5 3;...
       2 6 2;3 6 5;3 7 2;4 7 3;5 6 1;6 7 1;...
       5 8 5;6 8 2;6 9 3;7 9 2;7 10 3;8 9 2;...
       9 10 2;8 11 5;9 11 4;10 11 4]; % arrows and weights
    s=1; % the network source
    t=11; % the network sink
    fprintf('The source of the net s=%d\nThe sink of the net t=%d\n',s,t)
    grPlot(V,E,'d','','%d'); % the initial digraph
    title('\bfThe digraph of the net')
    [nMCS,mf]=grMinCutSet(E,s,t); % the minimal cut-set
    fprintf('The first minimal cut-set include arrows:');
    fprintf('  %d',nMCS);
    fprintf(['\nThe maximal flow through '...
      'each minimal cut-set = %12.6f\n'],mf)
    grPlot(V,E(setdiff(1:size(E,1),nMCS),:),'d','','%d');
    title('\bfThe digraph without first minimal cut-set')
  case 19, % grMinEdgeCover test
    disp('The grMinEdgeCover test')
    V=[0 0;1 1;1 0;1 -1;2 1;2 0;2 -1;3 1;...
       3 0;3 -1;4 0]; % vertexes coordinates and weights
    E=[1 2 5;1 3 5;1 4 5;2 3 2;3 4 2;2 5 3;2 6 2;3 6 5;...
       3 7 2;4 7 3;5 6 1;6 7 1;5 8 5;6 8 2;6 9 3;7 9 2;...
       7 10 3;8 9 2;9 10 2;8 11 5;9 11 4;10 11 4]; % edges and weights
    grPlot(V,E,'g',''); % the initial graph
    title('\bfThe initial graph with weighed edges')
    nMC=grMinEdgeCover(E(:,1:2)); % the minimal edge covering
    fprintf('Number of edges on the minimal edge covering = %d\n',...
      length(nMC));
    disp('In a minimal edge cover is the edges with numbers:');
    fprintf('%d  ',nMC);
    fprintf('\nThe total weight = %d\n',sum(E(nMC,3)));
    grPlot(V,E(nMC,:),'g',''); % the minimal edge covering
    title('\bfThe minimal edge covering')
    nMC=grMinEdgeCover(E); % the weighed minimal edge covering
    fprintf('Number of edges on the weighed minimal edge covering = %d\n',...
      length(nMC));
    disp('In a weighed minimal edge cover is the edges with numbers:');
    fprintf('%d  ',nMC);
    fprintf('\nThe total weight = %d\n',sum(E(nMC,3)));
    grPlot(V,E(nMC,:),'g',''); % the weighed minimal edge covering
    title('\bfThe weighed minimal edge covering')
  case 20, % grMinSpanTree test
    disp('The grMinSpanTree test')
    V=[0 4;1 4;2 4;3 4;4 4;0 3;1 3;2 3;3 3;4 3;...
       0 2;1 2;2 2;3 2;4 2;0 1;1 1;2 1;3 1;4 1;...
       0 0;1 0;2 0;3 0;4 0];
    E=[1 2 1;3 2 2;4 3 3;5 4 4;6 1 5;2 7 6;8 2 7;3 8 8;...
       9 4 9;9 5 8;10 5 7;7 6 6;8 7 5;8 9 4;10 9 3;11 6 2;...
       7 12 1;13 8 2;14 9 3;15 10 4;12 11 5;13 12 6;13 14 7;...
       14 13 8;5 5 10;15 14 9;16 11 8;12 17 7;13 18 6;...
       20 15 5;17 16 4;17 18 3;18 17 2;19 18 1;19 20 2;...
       5 5 8; 21 16 3;17 22 4;18 22 5;22 18 6;18 23 7;...
       19 24 8;20 25 9;21 22 8;22 21 7;23 24 6;10 10 8;...
       24 23 5;24 25 4];
    grPlot(V,E); % the initial graph
    title('\bfThe initial graph with weighed edges')
    nMST=grMinSpanTree(E(:,1:2)); % the spanning tree
    fprintf('Number of edges on the spanning tree = %d\n',length(nMST));
    fprintf('The total weight = %d\n',sum(E(nMST,3)));
    grPlot(V,E(nMST,:)); % the spanning tree
    title('\bfThe spanning tree')
    nMST=grMinSpanTree(E); % the minimal spanning tree
    fprintf('Number of edges on the minimal spanning tree = %d\n',...
      length(nMST));
    fprintf('The total weight = %d\n',sum(E(nMST,3)));
    grPlot(V,E(nMST,:)); % the minimal spanning tree
    title('\bfThe minimal spanning tree')
  case 21, % grMinVerCover test
    disp('The grMinVerCover test')
    V=[0 0 2;1 1 3;1 0 3;1 -1 4;2 1 1;2 0 2;2 -1 3;3 1 4;...
       3 0 7;3 -1 1;4 0 5]; % vertexes coordinates and weights
    E=[1 2;1 3;1 4;2 3;3 4;2 5;2 6;3 6;3 7;4 7;6 5;6 7;...
       5 8;6 8;6 9;7 9;7 10;8 9;9 10;8 11;9 11;10 11]; % edges
    grPlot(V,E,'g','%d',''); % the initial graph
    title('\bfThe initial graph with weighed vertexes')
    nMC=grMinVerCover(E); % the minimal vertex cover
    fprintf('Number of vertexes on the minimal vertex cover = %d\n',...
      length(nMC));
    disp('In a minimal vertex cover is the vertexes with numbers:');
    fprintf('%d  ',nMC);
    fprintf('\nThe total weight = %d\n',sum(V(nMC,3)));
    grPlot(V(nMC,:)); % the solution of the MinVerCover problem
    title('\bfThe minimal vertex cover')
    nMC=grMinVerCover(E,V(:,3)); % the weightd minimal vertex cover
    fprintf(['Number of vertexes on the weighed minimal vertex cover '...
      '= %d\n'],length(nMC));
    disp('In a weighed minimal vertex cover is the vertexes with numbers:');
    fprintf('%d  ',nMC);
    fprintf('\nThe total weight = %d\n',sum(V(nMC,3)));
    grPlot(V(nMC,:)); % the solution of the weighed MinVerCover problem
    title('\bfThe weighed minimal vertex cover')
  case 22, % grPERT test
    disp('The grPERT test')
    V=[1 1;0 0;1 0;1 -1;2 1;2 0;2 -1;3 1;...
       4 0;3 -1;3 0]; % events coordinates
    E=[2 1 5;2 3 5;2 4 5;1 3 2;3 4 2;1 5 3;...
       1 6 2;3 6 5;3 7 2;4 7 3;5 6 1;6 7 1;...
       5 8 5;6 8 2;6 11 3;7 11 2;7 10 3;8 11 2;...
       11 10 2;8 9 5;11 9 4;10 9 4]; % works and their times
    grPlot(V,E,'d','%d','%d');
    title('\bfThe schema of project')
    [CrP,Ts,Td]=grPERT(E);
    grPlot([V Ts'],[CrP(1:end-1);CrP(2:end)]','d','%d','');
    title('\bfThe critical path and start times for events')
    grPlot([V Ts'],[E(:,1:2) Td],'d','%d','%d')
    title('\bfThe start times for events and delay times for works')
  case 23, % grPlot test
    disp('The grPlot test')
    V=[0 0 2;1 1 3;1 0 3;1 -1 4;2 1 1;2 0 2;2 -1 3;3 1 4;...
       3 0 5;3 -1 1;4 0 5]; % vertexes coordinates and weights
    E=[1 2 5;1 1 2;1 1 5;2 2 3;1 3 5;1 4 5;2 3 2;3 4 2;2 5 3;2 6 2;3 6 5;3 7 2;...
       4 7 3;5 6 1;6 7 1;5 8 5;6 8 2;6 9 3;7 9 2;7 10 3;8 9 2;...
       9 10 2;8 11 5;9 11 4;10 11 4;1 2 8;1 3 4;1 3 5;1 3 6]; % edges (arrows) and weights
    grPlot(V(:,1:2),E,'d');
    title('\bfThe digraph with weighed multiple arrows and loops')
    grPlot(V,E(:,1:2),[],'%d','');
    title('\bfThe graph with weighed vertexes without edges numeration')
    grPlot(V(:,1:2));
    title('\bfThe disconnected graph')
    grPlot([],fullfact([5 5]),'d')
    title('\bfThe directed clique\rm \itK\rm_5')
  case 24, % grShortPath test
    disp('The grShortPath test')
    V=[0 0;1 1;1 0;1 -1;2 1;2 0;2 -1;3 1;...
       3 0;3 -1;4 0]; % vertexes coordinates
    E=[1 2 5;1 3 5;1 4 5;2 3 2;3 4 2;2 5 3;...
       2 6 2;3 6 5;3 7 2;4 7 3;5 6 1;6 7 1;...
       5 8 5;6 8 2;6 9 3;7 9 2;7 10 3;8 9 2;...
       9 10 2;8 11 5;9 11 4;10 11 4]; % arrows and weights
    s=1; % the network source
    t=11; % the network sink
    fprintf('The source of the net s=%d\nThe sink of the net t=%d\n',s,t)
    grPlot(V(:,1:2),E,'d','','%d');
    title('\bfThe digraph with weighed edges')
    [dSP,sp]=grShortPath(E,s,t);
    disp('The shortest paths between all vertexes:');
    fprintf('    %2.0f',1:size(dSP,2));
    fprintf('\n');
    for k1=1:size(dSP,1),
      fprintf('%2.0f',k1)
      fprintf('%6.2f',dSP(k1,:))
      fprintf('\n')
    end
    grPlot(V(:,1:2),[sp(1:end-1);sp(2:end)]','d','%d','')
    title(['\bfThe shortest path from vertex ' ...
      num2str(s) ' to vertex ' num2str(t)])
  case 25, % grTravSale test
    disp('The grTravSale test')
    C=[0 3 7 4 6 4;4 0 3 7 8 5;6 9 0 3 2 1;...
       8 6 3 0 9 8;3 7 4 6 0 4;4 5 8 7 2 0];
    disp('The distances between cities:')
    fprintf('     %2.0f',1:size(C,2))
    fprintf('\n')
    for k1=1:size(C,1),
      fprintf('%2.0f',k1)
      fprintf('%7.2f',C(k1,:))
      fprintf('\n')
    end
    [pTS,fmin]=grTravSale(C);
    disp('The order of cities:')
    fprintf('%d   ',pTS)
    fprintf('\nThe minimal way =%3.0f\n',fmin)
  otherwise,
    error('Select the test')
end

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
五月激情六月综合| 国产精品国产三级国产普通话99| 欧美日韩黄色影视| 国产精品网曝门| 久久精品视频在线看| 日日夜夜精品视频免费| 国产亚洲精品精华液| 一本色道a无线码一区v| 国产精品理论在线观看| 一区二区三区四区亚洲| 日韩高清一区二区| 成人一级片在线观看| 在线中文字幕一区| 欧美精三区欧美精三区| 久久综合狠狠综合久久综合88| 中文字幕欧美三区| 午夜视频一区二区三区| 国产成人免费在线视频| 91福利社在线观看| 久久久精品蜜桃| 亚洲成人动漫av| 国产98色在线|日韩| 欧美三级韩国三级日本一级| 国产日韩av一区| 亚洲黄色性网站| 国产乱对白刺激视频不卡 | av成人免费在线观看| 欧美日韩一区二区三区高清| 欧美精品乱码久久久久久按摩 | 一区二区三区蜜桃网| 美日韩一级片在线观看| 色综合久久久久久久久| 久久先锋影音av| 日韩精品免费专区| 色综合网色综合| 精品捆绑美女sm三区| 日韩精品成人一区二区三区| 国产成人免费视频一区| 欧美精品粉嫩高潮一区二区| 一区二区三区四区乱视频| 国产精品18久久久久久久久| 日韩视频免费观看高清完整版在线观看 | 亚洲一区二区欧美日韩| 91一区在线观看| 国产三级久久久| 国产福利一区二区三区视频在线| 91麻豆精品国产91久久久久 | 欧美日韩精品系列| 亚洲美女视频在线观看| 91亚洲永久精品| 国产三级精品三级| 国产成人精品综合在线观看| 国产亚洲精品精华液| 国产成人精品在线看| 日韩中文字幕区一区有砖一区 | 视频一区视频二区在线观看| 欧美午夜免费电影| 亚洲综合成人在线视频| 欧美日韩一区在线观看| 亚洲精品中文在线观看| 欧美一区二区福利视频| 日本中文在线一区| 日韩午夜在线观看| 欧美日韩一区二区三区不卡| 日韩一级片网址| 国产黄色精品视频| 一区二区三区视频在线看| 欧美欧美欧美欧美| 国产精品中文字幕日韩精品| 日韩毛片精品高清免费| 91精品婷婷国产综合久久竹菊| 精品亚洲成av人在线观看| 亚洲欧洲精品一区二区三区| 69久久夜色精品国产69蝌蚪网| 精品一区二区在线看| 亚洲精品免费在线| 久久久美女毛片| 欧美又粗又大又爽| 国产精品一区一区| 亚洲成人tv网| 中文字幕av一区二区三区高| 欧美日韩国产区一| av亚洲产国偷v产偷v自拍| 日产国产高清一区二区三区| 亚洲私人黄色宅男| 久久综合九色综合97婷婷女人| 日本道精品一区二区三区| 国产一区二区三区不卡在线观看| 亚洲色图丝袜美腿| 国产日本欧美一区二区| 日韩欧美中文字幕制服| 欧美日韩亚洲综合在线 欧美亚洲特黄一级| 极品尤物av久久免费看| 国产成人欧美日韩在线电影| 爽好久久久欧美精品| 亚洲妇熟xx妇色黄| 亚洲免费视频成人| 亚洲国产成人午夜在线一区| 久久伊99综合婷婷久久伊| 欧美色精品天天在线观看视频| 成人免费毛片片v| 国产福利一区二区| 国产麻豆精品theporn| 免费成人性网站| 日本vs亚洲vs韩国一区三区| 亚洲国产日韩精品| 亚洲一区免费在线观看| 亚洲免费在线电影| 亚洲视频一区二区免费在线观看 | 亚洲国产成人在线| 欧美国产精品一区| 中文乱码免费一区二区| 中文字幕av在线一区二区三区| 久久一区二区视频| 国产人伦精品一区二区| 国产精品日日摸夜夜摸av| 久久网站最新地址| 日本一区二区在线不卡| 国产精品传媒入口麻豆| 国产精品女同互慰在线看| 欧美激情在线一区二区| 国产精品婷婷午夜在线观看| 国产欧美精品区一区二区三区| 久久精品在线免费观看| 国产精品久久久久久久久久免费看| 国产人妖乱国产精品人妖| 国产精品久久久久一区| 亚洲乱码一区二区三区在线观看| 亚洲欧洲在线观看av| 一区二区三区丝袜| 日本不卡不码高清免费观看| 狠狠色综合播放一区二区| 国产98色在线|日韩| 色综合天天性综合| 欧美日本一道本| 欧美白人最猛性xxxxx69交| 久久女同精品一区二区| 国产精品初高中害羞小美女文| 亚洲精品国产高清久久伦理二区| 亚洲图片欧美一区| 奇米四色…亚洲| 福利一区二区在线观看| 91社区在线播放| 欧美一区二区三区免费| 国产精品情趣视频| 天涯成人国产亚洲精品一区av| 男人操女人的视频在线观看欧美| 国产美女娇喘av呻吟久久| 99综合电影在线视频| 在线成人高清不卡| 国产欧美一二三区| 日韩精品免费专区| www.视频一区| 欧美日韩精品久久久| 久久亚洲欧美国产精品乐播 | 91麻豆精品秘密| 日韩精品在线看片z| 1000精品久久久久久久久| 亚洲成人免费影院| 国产成人av影院| 3751色影院一区二区三区| 国产精品美女久久久久aⅴ| 日韩精品三区四区| 色哟哟精品一区| 国产日产亚洲精品系列| 青娱乐精品在线视频| 91啪在线观看| 久久麻豆一区二区| 日韩av在线发布| 色爱区综合激月婷婷| 国产亚洲欧美激情| 免费不卡在线观看| 欧美在线free| 亚洲蜜桃精久久久久久久| 成人自拍视频在线| 欧美一区二区视频网站| 亚洲国产美国国产综合一区二区| 成人免费的视频| 国产色婷婷亚洲99精品小说| 麻豆专区一区二区三区四区五区| 91蜜桃网址入口| 国产精品乱码一区二三区小蝌蚪| 麻豆精品一区二区| 欧美美女网站色| 亚洲成av人片一区二区三区| 91丝袜美腿高跟国产极品老师| 国产拍揄自揄精品视频麻豆| 国产伦精一区二区三区| 日韩女优毛片在线| 蜜桃传媒麻豆第一区在线观看| 欧美四级电影网| 五月天一区二区三区| 色哟哟一区二区三区| 亚洲精品中文字幕在线观看| av午夜一区麻豆| 亚洲黄色小视频| 欧美在线一二三| 亚洲高清视频在线| 欧美精品久久天天躁| 奇米综合一区二区三区精品视频|