亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? http:^^www.tc.cornell.edu^visualization^education^cs718^fall1995^landis^index.html

?? This data set contains WWW-pages collected from computer science departments of various universities
?? HTML
?? 第 1 頁 / 共 5 頁
字號:
Date: Mon, 16 Dec 1996 22:15:24 GMTServer: NCSA/1.5Content-type: text/htmlLast-modified: Fri, 15 Dec 1995 21:05:39 GMTContent-length: 58986<html>
<title>Sean Landis' Fall 718 Context-Based Image Retrieval Project Page</title>
<head>
<h1>Sean Landis' CS718 Project, Fall 1995</h1>
</head>

<body>

<!WA0><!WA0><!WA0><!WA0><IMG SRC="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/line_blu.gif"><br>
<h1 align=center><i>Content-Based Image Retrieval Systems for Interior Design</i></h1>
<!WA1><!WA1><!WA1><!WA1><IMG SRC="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/line_blu.gif"><br>
<br><br>
<h2>Table of Contents</h2>
<!WA2><!WA2><!WA2><!WA2><a href="#Introduction">Introduction</a>
<br>
<!WA3><!WA3><!WA3><!WA3><a href="#Background">Background</a><br>
..........<!WA4><!WA4><!WA4><!WA4><a href="#Manual Image Analysis">Manual Image Analysis</a><br>
..........<!WA5><!WA5><!WA5><!WA5><a href="#Automated Image Analysis">Automated Image Analysis</a><br>
..........<!WA6><!WA6><!WA6><!WA6><a href="#Image Features">Image Features</a><br>
..........<!WA7><!WA7><!WA7><!WA7><a href="#Indexing and Queries">Indexing and Queries</a><br>
<!WA8><!WA8><!WA8><!WA8><a href="#Current Research">Current Research</a><br>
..........<!WA9><!WA9><!WA9><!WA9><a href="#Feature Extraction">Feature Extraction</a><br>
..........<!WA10><!WA10><!WA10><!WA10><a href="#Query Specification">Query Specification</a><br>
..........<!WA11><!WA11><!WA11><!WA11><a href="#Distance Metrics">Distance Metrics</a><br>
..........<!WA12><!WA12><!WA12><!WA12><a href="#Indexing">Indexing</a><br>
..........<!WA13><!WA13><!WA13><!WA13><a href="#Extensibility">Extensibility</a><br>
..........<!WA14><!WA14><!WA14><!WA14><a href="#Artificial Intelligence">Artificial Intelligence</a><br>
..........<!WA15><!WA15><!WA15><!WA15><a href="#Maximizing Domain Knowledge">Maximizing Domain Knowledge</a><br>
<!WA16><!WA16><!WA16><!WA16><a href="#Project Overview">Project Overview</a><br>
..........<!WA17><!WA17><!WA17><!WA17><a href="#Project Definition">Project Definition</a><br>
<!WA18><!WA18><!WA18><!WA18><a href="#Implemention">Implemention</a><br>
..........<!WA19><!WA19><!WA19><!WA19><a href="#Storage Manager">Storage Manager</a><br>
..........<!WA20><!WA20><!WA20><!WA20><a href="#Analysis Manager">Analysis Manager</a><br>
..........<!WA21><!WA21><!WA21><!WA21><a href="#Query Manager">Query Manager</a><br>
..........<!WA22><!WA22><!WA22><!WA22><a href="#Display Manager">Display Manager and the User Interface</a><br>
....................<!WA23><!WA23><!WA23><!WA23><a href="#Image Menu">Image Menu</a><br>
....................<!WA24><!WA24><!WA24><!WA24><a href="#View Menu">View Menu</a><br>
..........<!WA25><!WA25><!WA25><!WA25><a href="#Query by Color Algorithms">Query by Color Algorithms</a><br>
..........<!WA26><!WA26><!WA26><!WA26><a href="#Query by Pattern Algorithms">Query by Pattern Algorithms</a><br>
<!WA27><!WA27><!WA27><!WA27><a href="#Results">Results</a><br>
..........<!WA28><!WA28><!WA28><!WA28><a href="#Color Queries">Color Queries</a><br>
..........<!WA29><!WA29><!WA29><!WA29><a href="#Pattern Queries">Pattern Queries</a><br>
..........<!WA30><!WA30><!WA30><!WA30><a href="#User Interface">User Interface</a><br>
..........<!WA31><!WA31><!WA31><!WA31><a href="#Design">Design</a><br>
..........<!WA32><!WA32><!WA32><!WA32><a href="#Limitations">Limitations</a><br>
<!WA33><!WA33><!WA33><!WA33><a href="#Conclusions">Conclusions</a><br>
..........<!WA34><!WA34><!WA34><!WA34><a href="#Usefulness">Usefulness</a><br>
..........<!WA35><!WA35><!WA35><!WA35><a href="#Future Work">Future Work</a><br>
<!WA36><!WA36><!WA36><!WA36><a href="#References">References</a><br>
<br>
<!WA37><!WA37><!WA37><!WA37><IMG SRC="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/line_col.gif"><br>

<H2><a name="Introduction">Introduction</a></H2>

Computers are beginning to replace photographic archives as the preferred
form of repository. Computer-based image repositories provide a flexibility 
that cannot be attained with collections of printed images. Recently there has 
been an explosion in the number of images available to computer users.
As this number increases, users require more sophisticated methods of retrieval.
Content-based image retrival (CBIR) promises to fill this requirement.
<p>
There are many diverse areas where CBIR can play a key role in the use of
images<!WA38><!WA38><!WA38><!WA38><a href="#ref1">[1]</a>:<br>
<br>
<!WA39><!WA39><!WA39><!WA39><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Art galleries and museum management</b> <br>
<!WA40><!WA40><!WA40><!WA40><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Architectural and engineering design</b> <br>
<!WA41><!WA41><!WA41><!WA41><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Interior design</b> <br>
<!WA42><!WA42><!WA42><!WA42><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Remote sensing and natural resource management</b> <br>
<!WA43><!WA43><!WA43><!WA43><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Geographic information systems</b> <br>
<!WA44><!WA44><!WA44><!WA44><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Scientific database management</b> <br>
<!WA45><!WA45><!WA45><!WA45><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Weather forecasting</b> <br>
<!WA46><!WA46><!WA46><!WA46><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Retailing</b> <br>
<!WA47><!WA47><!WA47><!WA47><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Fabric and fashion design</b> <br>
<!WA48><!WA48><!WA48><!WA48><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Trademark and copyright database management</b> <br>
<!WA49><!WA49><!WA49><!WA49><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Law enforcement and criminal investigation</b> <br>
<!WA50><!WA50><!WA50><!WA50><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Picture archiving and communication systems</b> <br>
<!WA51><!WA51><!WA51><!WA51><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Education</b> <br>
<!WA52><!WA52><!WA52><!WA52><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Entertainment</b> <br>
<p>

With so many applications, CBIR has attracted the attention of researchers 
across several disciplines.
<br>
<br> 
<!WA53><!WA53><!WA53><!WA53><IMG SRC="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/line_col.gif"><br>
<H2><a name="Background">Background</a></H2>

Content-based retrieval is based on an understanding of the 
semantics of the objects in a collection. Semantic analysis is performed
when the object is inserted into the collection.
Given a semantic representation of the objects in a collection,
a user can compose a query that retrieves a set of objects with
similar semantics. Query analysis is usually performed on an index structure that
summarizes the data in the collection.
<p>
Content-based image retrieval is the semantic analysis and
retrieval of images. Semantic 
analysis may involve manual intervention, or it may be entirely 
automated. Manual analysis involves human
interpretation to associate semantic properties with an image.
Automated semantic analysis extracts image features that are 
correlated with some semantic meaning of the image. Both analysis methods
have their advantages and their drawbacks.

<h3> <a name="Manual Image Analysis">Manual Image Analysis</a> </h3>

Traditional databases use text key words as labels to efficiently access 
large quantities text data. Even complex text data can be automatically
summarized and labeled using natural language processing and artificial 
intelligence<!WA54><!WA54><!WA54><!WA54><a href="#ref5">[5]</a>. 
<p>
When the data are images rather than text, summarizing the data with labels
becomes considerably more difficult. For example, consider a repository of
news photographs. A user may wish to pose a query such as

<blockquote><em> Give me all new photographs containing a US President and a 
communist leader.</em></blockquote>

To support queries like this, images require labeling that indicates
the people in the images, their title, their nationality,
and their political alignment.
<p>
It is not known how humans can process electromagnetic signals and convert
them into highly detailed semantic interpretations. Therefore, human analysis
is required to generate labels that support sophisticated queries like the 
one above. But there are problems with human analysis:<br>
<dl>
<dt><!WA55><!WA55><!WA55><!WA55><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Personal perspective</b>
	<dd> One person's interpretation
	of the important features of an image may not match another person's
	interpretation. Personal perspective leads to variance in image analysis and labeling.
<dt><!WA56><!WA56><!WA56><!WA56><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Domain mismatch</b>
	<dd> A person's domain of interest may influence image feature selection 
	and analysis.
<dt><!WA57><!WA57><!WA57><!WA57><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Interface expressiveness</b>
	<dd>Human-computer
	interfaces provide a limited bandwidth of expressive capability. 
	Image analysis os limited by the expressiveness of the interface.
<dt><!WA58><!WA58><!WA58><!WA58><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Data entry errors</b>
	<dd>Humans are error-prone, especially 
	when set to a task which is tedious or redundant.<br>
</dl>
Because of these, and other problems, it is best to 
automate image analysis as much as possible. Where intervention is required,
the user should be limited to a set of unambiguous choices. 

<h3> <a name="Automated Image Analysis">Automated Image Analysis</a> </h3>

Automated image analysis calculates approximately invariant statistics
which can be correlated to the semantics of the image data. Example 
statistics are color histograms, invariants
of shape moments, and edges. Statistical analysis is useful because it provides
information about the image without fickle and costly human interaction. 
<p>
Despite its appeal, automated image analysis suffers drawbacks. The primary 
problem with statistical analysis is that extracted features can
only support a very specific type of query. The features apply to
a particular domain, but they are not useful for posing general purpose
queries against diverse data sets.
<p>
Consider an image database indexed by color histogram. For each image, a feature vector is
generated such that each element of the vector represents the percentage of a color
quantum found in the image. A three element vector could have quantums representing
red, green, and blue (in practice a color feature vector requires more than three elements). 
The feature vector for an image contains the quantized
percentage of red, green, and blue. The more quantums available,
the greater the accuracy of the feature vector and the greater the cost of indexing and
comparison.
<p>
If the database contained fabric images, a color histogram would be a powerful way
to pose a query. A user interested designing a men's casual shirt for spring 
wants bright, spring-like colors. The query is posed with the desired color mix, and
all fabrics containing similar mixes of the specified colors are retrieved.
On the other hand, if the database contained news photographs as described earlier,
then color histograms would not be very useful. The semantics of the images in the
database do not correlate well with color histograms. 

<h3> <a name="Image Features">Image Features</a></h3>

An image feature is a piece of semantic information extracted from the image. There are
several properties for measuring the quality of a feature:<br>
<dl>
<dt><!WA59><!WA59><!WA59><!WA59><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Capacity</b>
	<dd>The number of distinguishable images that can be 
		represented<!WA60><!WA60><!WA60><!WA60><a href="#ref7">[7]</a>. 
<dt><!WA61><!WA61><!WA61><!WA61><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Maximal Match Number</b>
	<dd>The maximum number of images a query could possibly
		retrieve<!WA62><!WA62><!WA62><!WA62><a href="#ref7">[7]</a>. 
<dt><!WA63><!WA63><!WA63><!WA63><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Complexity</b>
	<dd>The amount of computation required to determine if two images are similar
		for a particular feature.
<dt><!WA64><!WA64><!WA64><!WA64><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Compactness</b>
	<dd>The amount of space required to store and compare a feature.
</dl>

Image features can be categorized as either <em>primitive</em> or 
<em>logical</em><!WA65><!WA65><!WA65><!WA65><a href="#ref1">[1]</a>.
A primitive feature is a low-level or statistical attribute of an image such as an object 
boundry or color histogram. Primitive features are
automatically extracted directly from the image. A logical feature represents an abstract 
attribute such as the label <em>grass</em> assigned to a region of an image.
Logical features rely on information beyond that contained in the image.
<p>
The delineation between primitive and logical features is not always clear. Consider

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩aaa| 亚洲国产综合视频在线观看| 综合色中文字幕| 天天色综合成人网| 成人av网站在线观看免费| 欧美一区二区三区婷婷月色| 亚洲人成在线播放网站岛国 | 成人视屏免费看| 欧美群妇大交群的观看方式| 国产精品久久久久三级| 另类小说综合欧美亚洲| 精品视频123区在线观看| 国产精品久久二区二区| 国产一区二区三区黄视频 | 亚洲黄色小视频| 国产99精品在线观看| 精品少妇一区二区三区免费观看| av在线不卡免费看| 日韩中文字幕一区二区三区| ww亚洲ww在线观看国产| 99久久伊人精品| 蜜桃av一区二区三区电影| 国产精品电影一区二区| 欧美精品自拍偷拍动漫精品| 99精品国产99久久久久久白柏 | 亚洲免费视频成人| 亚洲色图欧美在线| 国产欧美在线观看一区| 久草热8精品视频在线观看| 精品视频全国免费看| 亚洲免费观看高清在线观看| 99v久久综合狠狠综合久久| 欧美国产乱子伦| 国产99一区视频免费| 国产日韩影视精品| 成人妖精视频yjsp地址| 欧美激情综合五月色丁香 | 91精品国产综合久久福利| 亚洲成在人线免费| 欧美美女一区二区| 日韩精品1区2区3区| 欧美三级电影一区| 韩国三级电影一区二区| 精品日韩一区二区三区| 青青草97国产精品免费观看| 日韩欧美视频一区| 国产在线不卡一区| 中文幕一区二区三区久久蜜桃| 成人亚洲一区二区一| 亚洲精选视频免费看| 欧美日韩在线三级| 久久精工是国产品牌吗| 久久久久久99精品| 99久久婷婷国产综合精品电影 | 亚洲免费观看高清| 欧美日韩不卡一区| 精品一区二区三区免费| 国产精品乱人伦中文| 欧美午夜电影网| 久久99精品久久只有精品| 欧美韩国日本一区| 欧美色成人综合| 久草中文综合在线| 亚洲人吸女人奶水| 欧美一区二区黄色| 菠萝蜜视频在线观看一区| 亚洲成人中文在线| 国产亚洲午夜高清国产拍精品 | 欧美不卡123| k8久久久一区二区三区| 婷婷中文字幕一区三区| 国产视频一区二区在线| 欧美无砖专区一中文字| 高清日韩电视剧大全免费| 日韩专区在线视频| 亚洲人成伊人成综合网小说| 精品精品欲导航| 色婷婷国产精品| 国产精品一区二区果冻传媒| 亚洲午夜视频在线| 中文字幕va一区二区三区| 91精品一区二区三区在线观看| 成人性视频网站| 精品一区二区免费| 亚洲永久免费av| 欧美国产1区2区| 精品美女一区二区三区| 欧美性xxxxxxxx| 99re6这里只有精品视频在线观看| 美女国产一区二区| 午夜精品免费在线| 亚洲欧美另类久久久精品| 久久精品在这里| 欧美mv日韩mv亚洲| 欧美美女网站色| 一本久久a久久免费精品不卡| 国产福利91精品一区| 久久99精品久久只有精品| 污片在线观看一区二区| 亚洲免费视频中文字幕| 中文字幕一区免费在线观看| 久久久无码精品亚洲日韩按摩| 欧美一区二区三区免费视频| 欧美日韩视频在线观看一区二区三区| 丰满亚洲少妇av| 国产精品综合在线视频| 精品一区二区三区在线观看| 青青草原综合久久大伊人精品优势| 一区二区三区电影在线播| 一区二区三区av电影| 亚洲日本va午夜在线电影| 亚洲日本一区二区| 一区二区三区在线视频观看58 | 久久99精品国产91久久来源| 日本在线不卡一区| 免费av成人在线| 国内精品写真在线观看| 韩国精品久久久| 国产精品18久久久| 成人黄色小视频| www.日韩在线| 91在线精品秘密一区二区| 91蜜桃视频在线| 在线这里只有精品| 欧美美女网站色| 亚洲精品一区二区三区福利 | 欧美一区二区视频在线观看2020| 91精品一区二区三区久久久久久| 日韩一卡二卡三卡四卡| 日韩欧美电影一二三| 国产喷白浆一区二区三区| 国产精品免费久久| 亚洲曰韩产成在线| 久久精品国产亚洲a| 成人av网站免费| 一本色道a无线码一区v| 678五月天丁香亚洲综合网| 欧美电影免费观看高清完整版| 久久婷婷国产综合国色天香| 国产精品乱人伦一区二区| 午夜精品久久久久久不卡8050| 蜜桃精品视频在线观看| 从欧美一区二区三区| 在线观看亚洲a| 日韩免费观看高清完整版在线观看| 国产午夜精品在线观看| 亚洲综合免费观看高清完整版在线 | 国产精品国产三级国产| 欧美熟乱第一页| 欧美大片一区二区三区| 国产精品久久久久久久久免费桃花| 亚洲欧美偷拍另类a∨色屁股| 亚洲电影第三页| 国产伦精品一区二区三区视频青涩 | 日韩欧美中文字幕精品| 国产无人区一区二区三区| 亚洲精品成人天堂一二三| 久久er99精品| 日本乱码高清不卡字幕| 欧美xxxx老人做受| 一区二区三区四区激情| 精品一区二区三区久久久| 一本色道**综合亚洲精品蜜桃冫 | 韩国精品主播一区二区在线观看| 91视频免费播放| 精品成人私密视频| 亚洲国产美国国产综合一区二区| 国产精品影视网| 欧美片在线播放| 国产精品久久久久久久裸模| 奇米影视在线99精品| 日本乱码高清不卡字幕| 国产亚洲欧美在线| 男人的j进女人的j一区| 色综合天天综合网国产成人综合天| 欧美www视频| 亚洲超碰精品一区二区| 一本色道综合亚洲| 国产亚洲精品7777| 久久99蜜桃精品| 欧美精品三级在线观看| 亚洲免费伊人电影| 99综合电影在线视频| 欧美成人a在线| 久久精品99国产精品日本| 欧美乱妇15p| 亚洲一区二区三区在线播放 | 国产精品中文欧美| 欧美一级久久久| 亚洲va欧美va天堂v国产综合| 不卡的电影网站| 国产精品天干天干在观线| 国产经典欧美精品| 久久久久久久免费视频了| 久久成人久久鬼色| 精品88久久久久88久久久| 免费成人av在线播放| 欧美刺激脚交jootjob| 美女脱光内衣内裤视频久久网站 | 9191成人精品久久|