亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? http:^^www.tc.cornell.edu^visualization^education^cs718^fall1995^landis^index.html

?? This data set contains WWW-pages collected from computer science departments of various universities
?? HTML
?? 第 1 頁 / 共 5 頁
字號:
an image which is a 2D representation of a 3D scene containing several objects. 
Features representing the objects might be either primitive or logical features. If
the extraction 	generates a feature containing edge information, then it is
a primitive feature. On the other hand, if the extraction identifies the object by name,
say by utilizing a model-based approach, it is a logical feature.
<p>
Primitive features are often used as the basis for generating logical features. A common 
CBIR system architecture layers logical feature extraction on top of primitive 
featue extraction. Primitive
features are extracted directly from the image to generate a <em>segemented</em> image.
From this information, more abstract, logical features are generated<!WA66><!WA66><!WA66><!WA66><a href="#ref6">[6]</a>.
Segementation is the process of dividing the image into regions that correspond to 
structural units of interest<!WA67><!WA67><!WA67><!WA67><a href="#ref10">[10]</a>. 

<h3> <a name="Indexing and Queries">Indexing and Queries</a></h3>

The goal of indexing is to create a compact summary of the database contents to
provide an efficient mechanism for retrieval of the data.
The summary data is based on feature vectors:

<blockquote>
Since in content based visual databases, all items (images or objects) are represented
by pre-computed visual features, the key attribute for each image will be a feature
vector which corresponds to a point in a multi-dimensional feature space; and search
will be based on similarities between the feature vectors. Therefore, to achieve a
fast and effective retrieval...requires an efficient multi-dimensional indexing
scheme<!WA68><!WA68><!WA68><!WA68><a href="#ref11">[11]</a>.
</blockquote>

Multiple indexing schemes may be required to support queries involving a 
combination of features. 
To utilize multiple indexes, a hierarchical approach is often used where each 
component of a query is applied against an appropriate index. A higher layer merges results
for presentation to the user.
<p>
CBIR queries are posed in a fuzzy fashion. The user is typically interested in results
according to similarity rather than equality. This requirement influences the indexing 
scheme, the methods of feature comparison, and the means by which queries are 
solicited from the user. 
<p>
Image similarity is usually determined by computing a distance measure between the
query and the appropriate feature vectors in the index structure. Similar images
are ranked according to distance. Thresholding may be used to reduce the number of 
similar images presented to the user.
<p> 
A query is created by composing primitive and logical feature vectors. To present
a simple and structured query environment, CBIR systems define query classes.
Some typical query classes 
are<!WA69><!WA69><!WA69><!WA69><a href="#ref1">[1]</a>:<br>

<dl>
<dt><!WA70><!WA70><!WA70><!WA70><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Color</b>
	<dd> A partial histogram is created by specifying colors and 
		percentages<!WA71><!WA71><!WA71><!WA71><a href="#ref3">[3]</a><!WA72><!WA72><!WA72><!WA72><a href="#ref6">[6]</a>
		<!WA73><!WA73><!WA73><!WA73><a href="#ref7">[7]</a><!WA74><!WA74><!WA74><!WA74><a href="#ref12">[12]</a><!WA75><!WA75><!WA75><!WA75><a href="#ref13">[13]</a>. 
<dt><!WA76><!WA76><!WA76><!WA76><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Texture</b>
	<dd> Texture features include directionality, periodicity, randomness, 
		roughness, regularity, coarseness, color distribution, contrast, and
		complexity<!WA77><!WA77><!WA77><!WA77><a href="#ref5">[5]</a><!WA78><!WA78><!WA78><!WA78><a href="#ref12">[12]</a>
		<!WA79><!WA79><!WA79><!WA79><a href="#ref13">[13]</a>.
<dt><!WA80><!WA80><!WA80><!WA80><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Sketch</b>
	<dd> The user creates a sketch representing an outline to be matched against
		dominant image edges<!WA81><!WA81><!WA81><!WA81><a href="#ref3">[3]<!WA82><!WA82><!WA82><!WA82><a href="#ref12">[12]</a>.
<dt><!WA83><!WA83><!WA83><!WA83><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Shape</b>
	<dd> An example shape is created using simple painting tools. The shape is 
		compared to objects within images for similarity<!WA84><!WA84><!WA84><!WA84><a href="#ref3">[3]</a>
		<!WA85><!WA85><!WA85><!WA85><a href="#ref4">[4]</a><!WA86><!WA86><!WA86><!WA86><a href="#ref12">[12]</a><!WA87><!WA87><!WA87><!WA87><a href="#ref13">[13]</a>
<dt><!WA88><!WA88><!WA88><!WA88><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Volume</b>
	<dd> Volumetric relationships are specified using 3D tools. Feature vectors contain
		3D information.
<dt><!WA89><!WA89><!WA89><!WA89><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Spatial constraints</b>
	<dd> The feature vector contains topological relationships among the objects in an image.
<dt><!WA90><!WA90><!WA90><!WA90><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Browsing</b>
	<dd> The user is presented with a structured method of viewing the entire database.
<dt><!WA91><!WA91><!WA91><!WA91><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Objective features</b>
	<dd> Objective features are attributes such as date of image acquisition, 
		light direction, and view
		direction. These features lend themselves to the methods used in
		traditional databases<!WA92><!WA92><!WA92><!WA92><a href="#ref5">[5]</a><!WA93><!WA93><!WA93><!WA93><a href="#ref9">[9]</a>.
<dt><!WA94><!WA94><!WA94><!WA94><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Subjective features</b>
	<dd> Feature extraction is manual or semi-automatic and is subject to human
		interpretation. Examples are region labels and 
		manual object identification<!WA95><!WA95><!WA95><!WA95><a href="#ref5">[5]</a><!WA96><!WA96><!WA96><!WA96><a href="#ref9">[9]</a>.
<dt><!WA97><!WA97><!WA97><!WA97><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Motion</b>
	<dd> Motion is applicable to a series of images such as video segments. Motion features 
		measure movement of objects in the sequences or other movement such
		as camera viewpoint and camera focal point<!WA98><!WA98><!WA98><!WA98><a href="#ref3">[3]</a>.
<dt><!WA99><!WA99><!WA99><!WA99><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Text</b>
	<dd> Either simple or complex text can be associated with images. For the 
		simple case, traditional database methods can be used. Complex
		systems use natural language processing and artificial intelligence to
		reason about text annotations<!WA100><!WA100><!WA100><!WA100><a href="#ref5">[5]</a>.
<dt><!WA101><!WA101><!WA101><!WA101><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/bludot.gif"> <b>Domain concepts</b>
	<dd> Domain information lends itself to specific forms of feature vectors and
		queries. 
</dl>

Query classes provide a meaningful way for a user to create feature vectors that
correspond to their notion of image semantics.
Queries can be composed of multiple query classes. 
<p>
An alternative to user-composed queries are queries by example. The user submits
a query in the form of a prototype image and the system uses the feature vector(s)
of the appropriate query class(es). Often a session will
begin with user-composed queries which are then refined through query by example.
<p>
To run an interactive query on a system called Query by Image Content (QBIC), 
click
<!WA102><!WA102><!WA102><!WA102><A href="http://wwwqbic.almaden.ibm.com"> here.</A> 
<br> 
<br>

<!WA103><!WA103><!WA103><!WA103><IMG SRC="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/line_col.gif"><br>

<H2><a name="Current Research">Current Research</a></H2>

There are a large number of researchers exploring CBIR-related topics. 
I focused on recent work which has been more productive. 
The following sections describe some of the important topics I studied.

<h3><a name="Feature Extraction">Feature Extraction</a> </h3>

Feature extraction is performed when an image is added to the database. CBIR systems
provide support for multiple query classes.
Pickard and Minka<!WA104><!WA104><!WA104><!WA104><a href="#ref5">[5]</a> use 6 different 
features to characterize images from the MIT Photobook image retrieval system.
<p>
The CORE system<!WA105><!WA105><!WA105><!WA105><a href="#ref6">[6]</a>, is a retrieval engine that 
supports a wide range of features including
visual browsing, color similarity measures, and text. Primitive features are combined
to create higer level, logical features they call <em>concepts</em>. 
<p>
The QBIC system<!WA106><!WA106><!WA106><!WA106><a href="#ref3">[3]</a><!WA107><!WA107><!WA107><!WA107><a href="#ref12">[12]</a> extracts features
that support image query classes for color, texture, shape, sketching, location,
and text. The system also supports a set of video oriented query classes. 
<p>
For color histograms, many different extraction methods are used. The first issue
is the dimension of the color feature vector, e.g., the number of colors. Typical
numbers range from 64 to 256 dimensions (256 being the number of unique colors
representable with one byte).
The higher the dimension of the feature vector, the greater its capacity.
<p>
The values in each bin of a color histogram are usually either the total number
of pixels, or the percentage of pixels for the given color in 
the entire image.
 
<h3><a name="Query Specification">Query Specification</a></h3>

The papers I read treated query specification as a secondary issue. 
Researchers recognized the need for simple ways to specify queries. Unlike
text-based databases where the desired information is retrieved with
a single query, a suitable image may require many queries. 
CBIR systems typically return several of the <em>best</em> images for selection
by the user. Many systems allow the user to select one of these images as an
example for another query. This is an example of <em>query refinement</em>.
Researchers are exploring ways of providing easy refinement of queries that
yield high success.
<p>
The use of multiple query classes to compose
a query interests researchers. 
Although many systems claim to support composite queries, few of the
papers explained how to combine query classes successfully.

<h3><a name="Distance Metrics"</a>Distance Metrics</h3>

Most image query classes rely on similarity metrics rather than exact matching. 
Distance metrics produce a relative distance between two image feature vectors.
A threshold is used to determine if two features are similar.
In many cases, the user can control the threshold to relax or constrain a query.
<p>
Every distance metric has advantages and drawbacks. For example, 
Stricker<!WA108><!WA108><!WA108><!WA108><a href="#ref7">[7]</a> analyzes two common distance metrics, the L1 and
L2 (euclidean) norms. The <a name="L1 norm">L1 norm</a> computes the distance <em>d</em> 
between two <em>n</em> element color histograms <em>H</em> and <em>I</em> as:

<br>
<p align=center>
<!WA109><!WA109><!WA109><!WA109><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/L1.jpg">
</p>

And the <a name="L2 norm">L2 norm</a> is computed as:

<br>
<p align=center>
<!WA110><!WA110><!WA110><!WA110><img src="http://www.tc.cornell.edu/Visualization/Education/cs718/fall1995/landis/L2.jpg">
</p>

Stricker states that "Using the L1-metric results in false negatives, i.e., not all 
the images with similar color composition are retrieved because the L1-metric does
not take color similarity into account. Using a metric similar to the L2-metric
results in false positives, i.e., histograms with many non-zero bins are close to
any other histogram and thus are retrieved always."
<p>
The QBIC system<!WA111><!WA111><!WA111><!WA111><a href="#ref12">[12]</a> uses a 64 or 256 dimension color histogram where
each <em>i</em>-th element is the percentage of color <em>i</em>. The distance 
between histogram <em>r</em> and database image histogram <em>q</em> is
computed as <em>(r - q)T A(r - q)</em>. Where <em>T</em> is the transpose operator.
The locations <em>a(i,j)</em> in <em>A</em> contain the distance between color
<em>i</em> and color <em>j</em>.
<p>
IBM's Ultimedia Manager<!WA112><!WA112><!WA112><!WA112><a href="#ref13">[13]</a> uses a 64-dimensional vector of color
percentages. Each dimension represents a range in color space. At analysis time
the color of each pixel is quantized into one of the 64 ranges based on its location
in RGB space.

<h3><a name="Indexing">Indexing</a></h3>

The predominant CBIR research is in the area of image feature indexing. There are
many difficult problems to solve. First, image features are typically high dimensional
requiring complex, multi-dimensional indexing. Second, traditional indexing assumes

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美一级黄色片| 成人综合在线观看| 中文字幕一区二区视频| 久久免费精品国产久精品久久久久| 宅男噜噜噜66一区二区66| 欧美丰满嫩嫩电影| 欧美一级日韩不卡播放免费| 91精品国产91久久综合桃花| 欧美一二三区在线观看| 日韩精品中午字幕| 久久精品一区八戒影视| 久久久蜜臀国产一区二区| 中文av一区二区| 亚洲自拍偷拍图区| 三级成人在线视频| 国产一区二区电影| av亚洲精华国产精华| 在线观看国产日韩| 欧美一级一级性生活免费录像| 精品日韩av一区二区| 国产三级一区二区| 一区二区三区日韩| 青草国产精品久久久久久| 国产精品资源站在线| 91在线丨porny丨国产| 欧美日韩免费不卡视频一区二区三区 | 国内成+人亚洲+欧美+综合在线 | 欧美日韩中文精品| 日韩精品在线看片z| 国产精品伦理在线| 午夜精品久久久久久久久久| 国产又黄又大久久| 在线精品视频免费播放| 精品免费99久久| 亚洲另类在线制服丝袜| 久久97超碰色| 在线精品亚洲一区二区不卡| 日韩免费观看高清完整版| 国产精品成人免费在线| 免费成人美女在线观看.| 成人av先锋影音| 日韩欧美一二三区| 一区二区三区四区乱视频| 国产精品一区二区果冻传媒| 欧美日韩亚洲综合一区 | 亚洲色图色小说| 久久99精品国产麻豆婷婷洗澡| 99久久99久久精品国产片果冻| 欧美日韩国产一二三| ●精品国产综合乱码久久久久| 麻豆精品在线观看| 日本精品裸体写真集在线观看 | 91精品国产高清一区二区三区 | 91精品久久久久久久久99蜜臂| 国产精品区一区二区三| 五月婷婷激情综合| 色婷婷狠狠综合| 欧美国产一区视频在线观看| 久色婷婷小香蕉久久| 在线观看av不卡| 国产精品二区一区二区aⅴ污介绍| 麻豆国产精品一区二区三区 | 亚洲欧美国产毛片在线| 国产精品99久久久久久有的能看| 欧美日韩一区小说| 亚洲黄色免费网站| 99久久精品国产一区| 国产无遮挡一区二区三区毛片日本| 日韩国产在线一| 欧美日韩免费观看一区二区三区 | 波多野结衣的一区二区三区| 欧美精品一区二区三区视频| 老司机午夜精品99久久| 精品理论电影在线观看| 麻豆精品一区二区av白丝在线| 日韩视频在线观看一区二区| 麻豆91免费看| 欧美α欧美αv大片| 激情综合五月天| 国产亚洲精品aa午夜观看| 菠萝蜜视频在线观看一区| 国产精品三级av| 91在线观看污| 一区二区三国产精华液| 欧美私模裸体表演在线观看| 亚洲永久精品大片| 欧美日韩1234| 久久91精品国产91久久小草| 欧美精品一区二区在线播放| 国产一区二区三区精品欧美日韩一区二区三区 | 亚洲欧洲综合另类| 在线视频综合导航| 性久久久久久久| 日韩欧美一区二区三区在线| 美女精品自拍一二三四| 久久久精品免费网站| av电影在线观看一区| 亚洲日本va在线观看| 欧美日韩久久一区| 另类欧美日韩国产在线| 国产精品久久久一本精品| av一区二区三区| 亚洲成人资源网| 久久综合九色综合97_久久久 | 亚洲美女少妇撒尿| 欧美狂野另类xxxxoooo| 精品一区二区三区在线播放| 国产精品成人免费在线| 欧美日韩一区二区三区免费看| 免费欧美在线视频| 国产精品福利av| 欧美xxxxx裸体时装秀| 91一区二区在线| 麻豆91免费观看| 一区二区三区在线观看国产| 精品国一区二区三区| 91在线播放网址| 国产在线看一区| 亚洲午夜激情网站| 国产人久久人人人人爽| 欧美乱妇20p| 色综合久久久久久久| 国产精品一区二区在线看| 亚洲国产另类av| 国产精品美女www爽爽爽| 日韩精品一区二区三区老鸭窝| 一本一道波多野结衣一区二区 | 国产精品美女久久久久aⅴ国产馆 国产精品美女久久久久av爽李琼 国产精品美女久久久久高潮 | 欧美系列在线观看| 不卡的av电影| 国产成人啪免费观看软件| 日日夜夜精品视频天天综合网| 国产精品久久久久久久久图文区 | 亚洲精品成a人| 欧美国产日本视频| 久久久高清一区二区三区| 日韩精品一区二区三区swag| 欧美日韩激情一区二区三区| 91视频国产观看| 盗摄精品av一区二区三区| 国内精品第一页| 国内精品久久久久影院薰衣草| 视频一区视频二区在线观看| 樱花影视一区二区| 亚洲少妇屁股交4| 亚洲人成亚洲人成在线观看图片| 国产日韩精品一区| 久久亚洲精品国产精品紫薇 | 国产iv一区二区三区| 国内精品久久久久影院薰衣草| 九九视频精品免费| 久久99精品久久只有精品| 日本午夜精品一区二区三区电影| 亚洲国产成人91porn| 亚洲v日本v欧美v久久精品| 亚洲观看高清完整版在线观看| 一区二区久久久| 亚洲国产精品尤物yw在线观看| 亚洲精品国产成人久久av盗摄| 亚洲免费资源在线播放| 亚洲成人激情综合网| 日韩av在线播放中文字幕| 日本vs亚洲vs韩国一区三区| 久久99精品久久久久久国产越南 | 日韩欧美123| 精品国产一区二区三区av性色| 精品奇米国产一区二区三区| 精品国产精品一区二区夜夜嗨| 26uuu精品一区二区| 国产农村妇女毛片精品久久麻豆| 国产精品丝袜黑色高跟| 亚洲丝袜另类动漫二区| 夜夜亚洲天天久久| 琪琪久久久久日韩精品| 国产高清不卡二三区| 成人avav影音| 欧美精品一级二级| 精品国产乱码久久久久久免费| 亚洲国产精品成人久久综合一区| 一区视频在线播放| 视频精品一区二区| 国产91精品在线观看| 91福利国产精品| 欧美大白屁股肥臀xxxxxx| 国产精品三级久久久久三级| 天天操天天综合网| 国产.精品.日韩.另类.中文.在线.播放| 99国产精品国产精品毛片| 91精品国产高清一区二区三区| 国产精品婷婷午夜在线观看| 亚洲高清免费一级二级三级| 国产一区二区三区在线观看免费视频 | 午夜视频在线观看一区二区三区| 久久99深爱久久99精品| 色综合激情久久| 精品国产乱码久久久久久久| 一区二区三区.www| 国产999精品久久久久久| 欧美日韩国产一二三| 自拍av一区二区三区|