亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? http:^^www.tc.cornell.edu^visualization^education^cs417^sections^dynamics.html

?? This data set contains WWW-pages collected from computer science departments of various universities
?? HTML
?? 第 1 頁 / 共 2 頁
字號(hào):
Date: Mon, 16 Dec 1996 23:40:02 GMTServer: NCSA/1.5Content-type: text/htmlLast-modified: Wed, 28 Feb 1996 13:45:23 GMTContent-length: 14462<html><head><title>dynamics</title></head><body><h2>Using forces to animate objects</h2><hr><b> Introduction </b> <p>There are several good reasons why you may want to compute motion of objectsbased on forces, rather than attempt a kinematic description of object motion.<ul><li> It is often easier to write an expression for the forces on an object(a differential equation) than it is to directly describe the motion.<li> Dynamic systems based on forces evolve "automatically" so than the motionis physically correct (given the correct equations). This automatic behaviorrelieves the animator of attention to lots of boring detail.<li> For chaotic systems it is impossible to write a kinematic description.</ul><hr><b> Background </b> <p>The basis of many particle systems is a description of the accelerationof the particles.  If the accelerations are given, then thesystem is called second order because two integrations must be done to get the positions. <p>As an example, consider a mass on the end of a spring sliding on a frictionless horizontal table. the forceon the mass is given by: <p> <code>F =  -k*x </code> <p>where F is the force, k is the spring constant and x is the length of the spring.The negative sign appears because the force from a spring pulls in theopposite direction to the spring extension.<p>Since <code> F = m*a </code> where <code> a </code> is the acceleration, <p> <code>a =  -(k/m)*x </code> <p>Now given the acceleration, and if we know an initial velocity and position, we can find the position of the mass at any later time. In the case ofthis linear spring, we can integrate the acceleration directly to findthat the position is a sinusoidal function of time. The constant <code> (k/m)</code> will determine the frequency of the sinusoidal function, whilethe initial position, x0, and velocity, v0, will determine the amplitude andphase [5]. The position is given by: <p><!WA0><!WA0><!WA0><!WA0><img src="http://www.tc.cornell.edu/Visualization/Education/cs417/SECTIONS/dynamics.eqn.spring.gif"><p>In this simple case, the solution is available, so one could code akinematic solution (that is, just plug time into the sin function), butnotice that the description of the system in differential form is morecompact and straightforward. Also if we changed the force to a morerealistic "stiff spring" model such as:<code> <p>F =  -k*x - c*x^3 </code> <p>we could not directly integrate it, butwould be forced to use numerical methods. The next section will considerhow to perform the integration.<hr><b> Numerical integration </b> <p>Solving a dynamic system means figuring out how to move the system forward intime from some set of initial conditions to compute the positions as a function of time.  For instance you might want of trace the trajectory of a ball after it is fired from a cannon. In general,direct analytical solutions of the differential equations governing a system are hard or impossible. We will outline some techniques forsolving a system by simple (but perhaps not optimal) numerical methods.<p>As a disclaimer, it is difficult  to construct generalnumerical schemes that work for various physical systems. What follows isa specific approach which works for some systems. Consider it the barestintroduction to the topic of numerical introduction. Much more detailmay be obtained in [1] or [3] or many other books.<p>We will consider three specific second order systems.<ul>  <li> <!WA1><!WA1><!WA1><!WA1><a href="http://www.tc.cornell.edu/Visualization/Education/cs417/SECTIONS/dynamics.3body.mpg"> Three-body gravitation </a>  <li> <!WA2><!WA2><!WA2><!WA2><a href="http://www.tc.cornell.edu/Visualization/Education/cs417/SECTIONS/dynamics.WaterWave.mpg"> Water waves </a>  <li> <!WA3><!WA3><!WA3><!WA3><a href="http://www.tc.cornell.edu/Visualization/Education/cs417/SECTIONS/dynamics.billards.mpg"> Billards impact system </a></ul>For each system we will first introduce the physics (the force law) thenthe scheme to integrate the force law to produce the time-dependentpositions. We will start with a integration scheme which will be used<b> only </b> for intrducing the notion of numerical integration. Whileuseful to look at, it should almost never be used for actual work.<hr><b> The Euler integration algorithm</b><p>Let me state again that this algorithm, while easy to understand, is soinefficient that it should only be used whem programming effortdominates throughput. We want to start with a differential equation andshow how to integrate in numerically. Start with the differentialequation<p><!WA4><!WA4><!WA4><!WA4><img src="http://www.tc.cornell.edu/Visualization/Education/cs417/SECTIONS/dynamics.eqn.dxdt.gif"> <p>We want to solve this equation by stepping time discretely forward insmall steps ("small" still needs to be defined).One discrete approximation of this equation is: <p><!WA5><!WA5><!WA5><!WA5><img src="http://www.tc.cornell.edu/Visualization/Education/cs417/SECTIONS/dynamics.eqn.deltaxdeltat.gif"> <p>where the n and n-1 refer to two time steps sufficiently close togetherthat the differences approximate the derivitive.Rearranging this equation yields: <p><!WA6><!WA6><!WA6><!WA6><img src="http://www.tc.cornell.edu/Visualization/Education/cs417/SECTIONS/dynamics.eqn.euler.gif"> <p>which gives a explicit form for stepping the system from time n-1 totime n. This form is thus a way to step a dynamic system forward in timegiven an initial state x0. The inefficiency of this method occursbecause of the assumption of constant f(x) across the entire time step.To be accurate the time step has to be very short compared to thenatural time constants of the system. <hr><b> The Verlet integration algorithm </b> <p>A much better alogrithm can be derived by averaging slopes across thesmall time interval of integration. One such formulation is called the velocityform of the Verlet algorithm [1]. This algorithm is most useful for secondorder systems where the force on an object is specified and the positionis desired as a function of time. Since the accelerations are specified,one integration must be done to calculate the velocity and a second doneto calculate the position.<p>The Verlet scheme is  first updates the position, then use the old and newposition information to update the velocity.<p><!WA7><!WA7><!WA7><!WA7><img src="http://www.tc.cornell.edu/Visualization/Education/cs417/SECTIONS/dynamics.eqn.verlet.gif" > <p>Where <!WA8><!WA8><!WA8><!WA8><img src="http://www.tc.cornell.edu/Visualization/Education/cs417/SECTIONS/dynamics.eqn.anMinus1.gif" align=middle> are the accelerations calculated from a force lawdescribing the system and which are usually a function of position.Note that an is calculated from the just-completed calculation for xn. Evaluating both of these equations advances the system  onetime step. To start the solution, a velocity and position have to beknown at t=0. Choosing delta t requires some care. Generally, you canstart with a time step which is around .2 of the fastest time-constantin the system.<p>The two Verlet equations can be vector equations if themotion is 2 or 3 dimensional.<p>Now we are ready to consider some specific physical systems.<hr><b> Gravitation and the three-body problem </b><p>The accleration due to a gravitating mass is <p><!WA9><!WA9><!WA9><!WA9><img src="http://www.tc.cornell.edu/Visualization/Education/cs417/SECTIONS/dynamics.eqn.grav.gif">  <p>where G is a strength contant, M is the mass of the object pulling onyou, and r is the distance between you and M. Since a and r are actuallyvectors we must derive a form of this equation which is useful in 2 or 3dimensions. We will use 2D here so we need equations for the x and ycomponents of the acceleration. Assuming body one is located atr1 and body two is located at r2, and that we want the acceleration of body one:<p><!WA10><!WA10><!WA10><!WA10><img src="http://www.tc.cornell.edu/Visualization/Education/cs417/SECTIONS/dynamics.eqn.gravxy.gif">  <p>Where theta is the angle measured from the x-axis of the vector r pointing

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品伦理一区二区| 亚洲国产精品自拍| 欧美日韩一级片网站| 国产精品一区二区黑丝| 亚洲国产视频一区| 国产女主播视频一区二区| 欧美嫩在线观看| 97精品久久久久中文字幕| 精品一区二区三区在线播放视频| 亚洲精品国产精华液| 中文字幕av资源一区| 欧美成人aa大片| 欧美高清dvd| 欧美图区在线视频| 91蜜桃免费观看视频| 国产成人免费高清| 国产一区二区女| 久久aⅴ国产欧美74aaa| 午夜成人在线视频| 亚洲综合免费观看高清完整版| 国产婷婷色一区二区三区四区| 欧美一区二区三区性视频| 91久久香蕉国产日韩欧美9色| 成人av电影在线网| 国产成人99久久亚洲综合精品| 狠狠色丁香婷婷综合久久片| 日韩国产欧美在线播放| 亚洲国产aⅴ成人精品无吗| 亚洲视频免费观看| 亚洲人成影院在线观看| 最新国产成人在线观看| 国产精品久久看| 国产精品入口麻豆原神| 欧美激情一区二区| 国产欧美视频在线观看| 久久精品亚洲麻豆av一区二区| 亚洲精品在线三区| 久久亚洲一级片| 久久久精品综合| 欧美极品xxx| 成人免费一区二区三区视频| 亚洲欧美在线aaa| 亚洲欧美日韩成人高清在线一区| 亚洲欧美在线视频观看| 一区二区三区精品久久久| 亚洲一区二区三区四区五区黄 | 亚洲精品老司机| 亚洲色图欧美激情| 亚洲永久精品大片| 日韩电影在线免费观看| 老司机午夜精品| 国产精品456| 99国产精品视频免费观看| 色吧成人激情小说| 欧美日韩国产综合一区二区三区| 69久久99精品久久久久婷婷| 日韩欧美国产午夜精品| 精品国产第一区二区三区观看体验| 久久无码av三级| 亚洲视频资源在线| 视频一区欧美日韩| 狠狠狠色丁香婷婷综合久久五月| 国产盗摄一区二区| 色8久久精品久久久久久蜜| 欧美精品久久天天躁| www国产成人| 亚洲欧美激情视频在线观看一区二区三区 | 欧美日韩视频专区在线播放| 欧美一级专区免费大片| 中文字幕精品一区二区精品绿巨人| 亚洲人成亚洲人成在线观看图片| 亚洲444eee在线观看| 国产一区福利在线| 91福利资源站| 精品国产伦一区二区三区观看方式 | 精品国产露脸精彩对白 | 亚洲欧美另类小说| 免费观看一级欧美片| 成人免费av资源| 欧美日韩aaaaa| 久久免费美女视频| 一区二区三区不卡视频在线观看| 另类人妖一区二区av| 97成人超碰视| 精品欧美一区二区三区精品久久| 中文字幕亚洲精品在线观看| 轻轻草成人在线| 91丝袜高跟美女视频| 欧美成人一区二区三区在线观看| 成人欧美一区二区三区白人| 捆绑变态av一区二区三区| 99精品视频在线观看| 精品欧美乱码久久久久久| 一区二区三区四区不卡视频| 国产一二精品视频| 欧美乱熟臀69xxxxxx| 中文字幕第一区综合| 美女视频黄久久| 欧美在线免费观看视频| 国产女人aaa级久久久级| 午夜视频一区二区| 色婷婷亚洲精品| 国产视频一区在线播放| 奇米影视在线99精品| 色一区在线观看| 国产精品美女久久久久aⅴ| 免费在线欧美视频| 欧美色综合久久| 亚洲天堂网中文字| 国产成人在线视频网站| 日韩女优毛片在线| 婷婷激情综合网| 91福利在线看| 国产69精品久久久久毛片 | 国产精品天美传媒沈樵| 黄页网站大全一区二区| 7777精品伊人久久久大香线蕉完整版 | 久久嫩草精品久久久精品| 秋霞午夜av一区二区三区| 欧美日韩色一区| 一区二区三区波多野结衣在线观看| 丁香亚洲综合激情啪啪综合| 精品国产91久久久久久久妲己| 日韩福利电影在线| 在线不卡欧美精品一区二区三区| 一区二区三区在线影院| 91美女片黄在线观看| 国产精品的网站| 成人av在线播放网站| 中文字幕av在线一区二区三区| 国产精一品亚洲二区在线视频| 日韩精品中文字幕在线不卡尤物| 三级久久三级久久久| 在线播放视频一区| 日本一不卡视频| 欧美一级欧美三级在线观看| 日本在线不卡视频| 555www色欧美视频| 蜜桃精品视频在线观看| 精品欧美黑人一区二区三区| 精品亚洲成a人| 久久精品人人做人人综合| 国产激情精品久久久第一区二区| 久久精品视频一区二区| 国产成人免费在线视频| 欧美国产视频在线| 99re成人在线| 亚洲国产精品久久不卡毛片 | 欧美性生活影院| 午夜精品免费在线观看| 日韩亚洲电影在线| 国模无码大尺度一区二区三区| 久久久精品人体av艺术| 不卡av电影在线播放| 亚洲男人的天堂在线观看| 欧美系列亚洲系列| 麻豆国产欧美一区二区三区| 国产欧美日韩亚州综合| 91麻豆国产香蕉久久精品| 亚瑟在线精品视频| 久久伊99综合婷婷久久伊| av成人老司机| 午夜精品国产更新| www国产成人免费观看视频 深夜成人网| 丁香亚洲综合激情啪啪综合| 一级做a爱片久久| 日韩视频免费观看高清在线视频| 国产精品88888| 一区二区在线电影| 欧美电视剧在线观看完整版| 成人精品高清在线| 天堂蜜桃91精品| 亚洲国产成人午夜在线一区| 欧美日韩午夜在线视频| 国产成人午夜视频| 亚洲国产精品精华液网站 | 亚洲成人av一区二区| 日韩情涩欧美日韩视频| 91视频在线看| 麻豆精品精品国产自在97香蕉| 国产精品电影一区二区三区| 51久久夜色精品国产麻豆| 成人一区二区三区在线观看| 午夜成人免费视频| 国产精品色噜噜| 欧美成人精品1314www| 91网上在线视频| 狠狠色丁香婷综合久久| 亚洲国产日韩av| 日本一二三四高清不卡| 91麻豆精品国产91久久久资源速度| 成人小视频免费观看| 日韩av中文字幕一区二区 | 一区二区三区免费看视频| 久久综合色婷婷| 欧美老年两性高潮| 99国产精品99久久久久久| 国产一区二区三区日韩| 日本在线播放一区二区三区| 亚洲女子a中天字幕|