亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? http:^^www.cs.wisc.edu^computer-vision^pubs.html

?? This data set contains WWW-pages collected from computer science departments of various universities
?? HTML
?? 第 1 頁 / 共 4 頁
字號:
Date: Tue, 05 Nov 1996 00:36:46 GMTServer: NCSA/1.5Content-type: text/htmlLast-modified: Tue, 03 Sep 1996 16:17:44 GMTContent-length: 54887<HTML><HEAD><title>Wisconsin Computer Vision Group Publications</title></HEAD><BODY><h1>Wisconsin Computer Vision Group Publications</h1><HR><BR>Click on any of the following topics to jump to that set of papersin this list of recent publications.  Click on the title to view a (postscript) paper.  If your browser supportsuncompressing of gzip'ed postscript, you'll prefer to click on thecompressed version to speed up downloading.  Size of compressedfile is given in parentheses.  <P><DD><!WA0><!WA0><!WA0><img alg="o" src="http://www.cs.wisc.edu/~dyer/images/redball.gif">    <!WA1><!WA1><!WA1><A HREF="#exploration">Visual Exploration</A><DD><!WA2><!WA2><!WA2><img alg="o" src="http://www.cs.wisc.edu/~dyer/images/redball.gif">    <!WA3><!WA3><!WA3><A HREF="#motion">Motion Analysis</A><DD><!WA4><!WA4><!WA4><img alg="o" src="http://www.cs.wisc.edu/~dyer/images/redball.gif">    <!WA5><!WA5><!WA5><A HREF="#shape">3D Shape Representation</A><DD><!WA6><!WA6><!WA6><img alg="o" src="http://www.cs.wisc.edu/~dyer/images/redball.gif">    <!WA7><!WA7><!WA7><A HREF="#snakes">Deformable Contours</A><DD><!WA8><!WA8><!WA8><img alg="o" src="http://www.cs.wisc.edu/~dyer/images/redball.gif">    <!WA9><!WA9><!WA9><A HREF="#visualization">Visualization</A><P><HR><!WA10><!WA10><!WA10><A HREF="http://www.cs.wisc.edu/computer-vision/">  <!WA11><!WA11><!WA11><IMG SRC="http://www.cs.wisc.edu/~dyer/images/return.gif"> </A>  Return to Wisconsin Computer Vision Group Home Page<HR><P><H2><A NAME="exploration">Visual Exploration</A></H2><UL><LI><!WA12><!WA12><!WA12><img alg="o" src="http://www.cs.wisc.edu/~dyer/images/new.gif">    <B><A NAME="fest96-yu">Shape Recovery from Stationary Surface Contours by Controlled Observer Motion</A></B><BR>     L. Yu and C. R. Dyer,     in <CITE>Advances in Image Understanding: A Festschrift for Azriel Rosenfeld</CITE>, IEEE Computer Society Press, Los Alamitos, Ca., 1996, 177-193.     (<!WA13><!WA13><!WA13><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/fest96-yu.ps">960K postscript</A>)<p><blockquote>The projected deformation of stationary contours and markings onobject surfaces is analyzed in this paper. It is shown that given amarked point on a stationary contour, an active observer can movedeterministically to the osculating plane for that point by observingand controlling the deformation of the projected contour. Reaching theosculating plane enables the observer to recover the object surfaceshape along the contour as well as the Frenet frame of thecontour. Complete local surface recovery requires either twointersecting surface contours and the knowledge of one principledirection, or more than two intersecting contours. To reach theosculating plane, two strategies involving both pure translation and acombination of translation and rotation are analyzed. Once the Frenetframe for the marked point on the contour is recovered, the sameinformation for all points on the contour can be recovered by stayingon osculating planes while moving along the contour. It is also shownthat occluding contours and stationary contours deform in aqualitatively different way and the problem of discriminating betweenthese two types of contours can be resolved before the recovery oflocal surface shape.</blockquote><LI>    <B><A NAME="ijcv94-kutulakos">Recovering Shape by Purposive Viewpoint Adjustment</A></B><BR>     K. N. Kutulakos and C. R. Dyer,     <CITE>Int. J. Computer Vision</CITE> <B>12</B>, 1994, 113-136.      (<!WA14><!WA14><!WA14><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/ijcv94-kutulakos.ps">postscript</A>    or <!WA15><!WA15><!WA15><A NAME="ijcv94-kutulakos" HREF="ftp://ftp.cs.wisc.edu/computer-vision/ijcv94-kutulakos.ps.gz">570K gzip'ed postscript</A>)<br>     (Earlier versions appeared in     <CITE>Proc. Computer Vision and Pattern Recognition Conf.</CITE>,     1992, 16-22       (<!WA16><!WA16><!WA16><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cvpr92-kutulakos.ps">postscript</A>     or <!WA17><!WA17><!WA17><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cvpr92-kutulakos.ps.gz">90K gzip'ed postscript</A>),<BR>     and as Computer Sciences Department     <CITE>Technical Report 1035</CITE>      (<!WA18><!WA18><!WA18><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/tr1035-kutulakos.ps">postscript</A>     or <!WA19><!WA19><!WA19><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/tr1035-kutulakos.ps.gz">160K gzip'ed postscript</A>).) <p> <blockquote>  We present an approach for recovering surface shape from the occluding  contour using an active (i.e., moving) observer.  It is based on a relation  between the geometries of a surface in a scene and its occluding contour: If  the viewing direction of the observer is along a principal direction for a  surface point whose projection is on the contour, surface shape (i.e.,  curvature) at the surface point can be recovered from the contour. Unlike  previous approaches for recovering shape from the occluding contour, we use  an observer that <EM>purposefully</EM> changes viewpoint in order to  achieve a  well-defined geometric relationship with respect to a 3D shape prior to its  recognition.  We show that there is a simple and efficient viewing strategy  that allows the observer to align the viewing direction with one of the two  principal directions for a point on the surface. This strategy depends on  only curvature measurements on the occluding contour and therefore  demonstrates that recovering quantitative shape information from the contour  does not require knowledge of the velocities or accelerations of the  observer.  Experimental results demonstrate that our method can be easily  implemented and can provide reliable shape information from the occluding  contour.</blockquote><LI> <B><A NAME="cvpr94-1-kutulakos">     Occluding Contour Detection using Affine Invariants and Purposive     Viewpoint Control</A></B><BR>     K. N. Kutulakos and C. R. Dyer,     <CITE>Proc. Computer Vision and Pattern Recognition Conf.</CITE>,     1994, 323-330.       (Received Siemens Best Paper Award <!WA20><!WA20><!WA20><img alg="o" src="http://www.cs.wisc.edu/~dyer/images/award.gif">)      (<!WA21><!WA21><!WA21><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cvpr94-1-kutulakos.ps">postscript</A>     or <!WA22><!WA22><!WA22><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cvpr94-1-kutulakos.ps.gz">190K gzip'ed postscript</A>)<P><blockquote>  We present an approach for identifying the occluding contour and  determining its sidedness using an active (i.e., moving) observer.  It is based on the <EM>non-stationarity property</EM> of the visible  rim: When the observer's viewpoint is changed, the visible rim is a  collection of curves that ``slide,'' rigidly or non-rigidly, over  the surface.  We show that the observer can deterministically choose  three views on the tangent plane of selected surface points to  distinguish such curves from stationary surface curves (i.e.,  surface markings). Our approach demonstrates that the occluding  contour can be identified <EM> directly</EM>, i.e., without first  computing surface shape (distance and curvature).</blockquote><LI> <B><A NAME="cvpr94-2-kutulakos">     Global Surface Reconstruction by Purposive Control of Observer Motion</A></B><BR>     K. N. Kutulakos and C. R. Dyer,     <CITE>Artificial Intelligence</CITE> <B>78</B>, No. 1-2, 1995, 147-177.     (<!WA23><!WA23><!WA23><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/aij95-kutulakos.tar.gz">2.0M gzip'ed tar file</A>)     <BR>     (Earlier version appeared in     <CITE>Proc. Computer Vision and Pattern Recognition Conf.</CITE>,     1994, 331-338.     (<!WA24><!WA24><!WA24><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cvpr94-2-kutulakos.ps">postscript</A>     or <!WA25><!WA25><!WA25><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cvpr94-2-kutulakos.ps.gz">370K gzip'ed postscript</A>).)<BR>     (Longer version appears as Computer Sciences Department     <CITE>Technical Report 1141</CITE>     (<!WA26><!WA26><!WA26><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/tr1141-kutulakos.ps">postscript</A>     or <!WA27><!WA27><!WA27><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/tr1141-kutulakos.ps.gz">1.1M gzip'ed postscript</A>).) <P><blockquote>What viewpoint-control strategies are important for performing globalvisual exploration tasks such as searching for specific surfacemarkings, building a global model of an arbitrary object, orrecognizing an object?  In this paper we consider the task ofpurposefully controlling the motion of an active, monocular observerin order to recover a global description of a smooth,arbitrarily-shaped object.  We formulate global surface reconstructionas the task of controlling the motion of the observer so that thevisible rim slides over the maximal, connected, reconstructiblesurface regions intersecting the visible rim at the initialviewpoint. We show that these regions are bounded by a subset of thevisual event curves defined on the surface.<P>By studying the epipolar parameterization, we develop two basicstrategies that allow reconstruction of a surface region around anypoint in a reconstructible surface region.  These strategies controlviewpoint to achieve and maintain a well-defined geometricrelationship with the object's surface, rely only on informationextracted directly from images (e.g., tangents to the occludingcontour), and are simple enough to be performed in real time. Wethen show how global surface reconstruction can be provably achievedby (1) appropriately integrating these strategies to iteratively``grow'' the reconstructed regions, and (2) obeying four simplerules.</blockquote><LI> <B><A NAME="cbvw94-kutulakos">     Building Global Object Models by Purposive Viewpoint Control</A></B><BR>     K. N. Kutulakos, W. B. Seales, and C. R. Dyer,     <CITE>Proc. 2nd CAD-Based Vision Workshop</CITE>,     1994, 169-182.     (<!WA28><!WA28><!WA28><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cbvw94-kutulakos.ps">postscript</A>     or <!WA29><!WA29><!WA29><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cbvw94-kutulakos.ps.gz">760K gzip'ed postscript</A>)<BR>     (An earlier version appeared in     <CITE>Proc. SPIE: Sensor Fusion VI</CITE>,      1993, 368-383     (<!WA30><!WA30><!WA30><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/spie93-kutulakos.ps">postscript</A>     or <!WA31><!WA31><!WA31><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/spie93-kutulakos.ps.gz">740K gzip'ed postscript</A>).)<P><blockquote>We present an approach for recovering a global surface model of anobject from the deformation of the occluding contour using an active(i.e., mobile) observer able to control its motion. In particular, weconsider two problems: (1) How can the observer's viewpoint becontrolled in order to generate a dense sequence of images that allowsincremental reconstruction of an unknown surface, and (2) how can weconstruct a global surface model from the generated image sequence?Solving these two problems is crucial for automatically constructingmodels of objects whose surface is non-convex and self-occludes. Weachieve the first goal by <EM>purposefully</EM> and <EM>qualitatively</EM>controlling the observer's instantaneous direction of motion in orderto control the motion of the visible rim over the surface.  We achievethe second goal by using a calibrated trinocular camera rig and amechanism for controlling the relative position and orientation of theviewed surface with respect to the trinocular rig.</blockquote><LI> <B><A NAME="thesis-kutulakos">     Exploring Three-Dimensional Objects by Controlling the Point of     Observation</A></B><BR>     K. N. Kutulakos, Ph.D. Dissertation,     Computer Sciences Department Technical Report 1251,     University of Wisconsin - Madison, October 1994.     (<!WA32><!WA32><!WA32><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/thesis-kutulakos.ps">postscript</A>     or <!WA33><!WA33><!WA33><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/thesis-kutulakos.zip">5.1M zip-compressed postscript</A>)<P><blockquote>In this thesis we study how controlled movements of a camera can beused to infer properties of a curved object's three-dimensional shape.The unknown geometry of an environment's objects, the effects ofself-occlusion, the depth ambiguities caused by the projectionprocess, and the presence of noise in image measurements are a few ofthe complications that make object-dependent movements of the cameraadvantageous in certain shape recovery tasks.  Such movements cansimplify local shape computations such as curvature estimation, allowuse of weaker camera calibration assumptions, and enable theextraction of global shape information for objects with complexsurface geometry.  The utility of object-dependent camera movements isstudied in the context of three tasks, each involving the extractionof progressively richer information about an object's unknown shape:(1) detecting the occluding contour, (2) estimating surface curvaturefor points projecting to the contour, and (3) building athree-dimensional model for an object's entire surface.  Our mainresult is the development of three distinct active vision strategiesthat solve these three tasks by controlling the motion of a camera.<P>Occluding contour detection and surface curvature estimation areachieved by exploiting the concept of a special viewpoint: Forany image there exist special camera positions from which the object'sview trivializes these tasks.  We show that these positions can bedeterministically reached, and that they enable shape recovery evenwhen few or no markings and discontinuities exist on the object'ssurface, and when differential camera motion measurements cannot beaccurately obtained.<P>A basic issue in building three-dimensional global object models ishow to control the camera's motion so that previously-unreconstructedregions of the object become reconstructed.  A fundamental difficultyis that the set of reconstructed points can change unpredictably(e.g., due to self-occlusions) when ad hoc motion strategies areused.  We show how global model-building can be achieved for genericobjects of arbitrary shape by controlling the camera's motion onautomatically-selected surface tangent and normal planes so that theboundary of the already-reconstructed regions is guaranteed to"slide" over the object's entire surface.<P>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品视频一区二区三区不卡| 日韩一级在线观看| 国产在线一区观看| 麻豆精品一二三| 激情综合五月天| 狠狠色狠狠色综合系列| 国产激情视频一区二区在线观看 | 91黄视频在线| 91老师片黄在线观看| 91香蕉视频污在线| 欧美性三三影院| 欧美一级夜夜爽| 午夜激情久久久| 国产真实乱子伦精品视频| 欧美老肥妇做.爰bbww视频| 国产成人av电影在线| 亚洲va韩国va欧美va| www.亚洲色图.com| 久久美女艺术照精彩视频福利播放 | 亚洲蜜桃精久久久久久久| 91美女在线看| 精品国产一区二区三区忘忧草| 亚洲午夜免费电影| 欧美在线播放高清精品| 一区二区三区在线观看动漫| proumb性欧美在线观看| 欧美大黄免费观看| 欧美亚洲国产一区二区三区va | 国产午夜精品久久久久久免费视 | 欧美日韩电影一区| 午夜精品久久久久久| 欧美日韩在线观看一区二区 | 久久66热re国产| 日韩一区二区视频在线观看| 亚洲高清三级视频| 欧美一区二区三区播放老司机| 日韩成人免费在线| 欧美一二三四在线| 精品亚洲免费视频| 国产无人区一区二区三区| 国产精品白丝av| 日本午夜一本久久久综合| 免费人成精品欧美精品 | 视频一区二区三区入口| 99久久国产综合精品麻豆| 日韩一区日韩二区| 欧美亚洲自拍偷拍| 91在线精品秘密一区二区| 国产a级毛片一区| 99久久99久久精品免费观看| 91麻豆福利精品推荐| 亚洲精品国产视频| 色综合久久久久久久| 热久久国产精品| 欧美极品少妇xxxxⅹ高跟鞋| 91视视频在线观看入口直接观看www | 欧美精品一区在线观看| 国产精品亚洲综合一区在线观看| 国产精品午夜久久| 欧美色综合久久| 狠狠色综合色综合网络| 亚洲人xxxx| 欧美精品一区二区蜜臀亚洲| 99这里都是精品| 久久精品二区亚洲w码| 国产精品嫩草99a| 91麻豆精品国产91久久久资源速度 | 国产精品久久久久永久免费观看| 91一区二区三区在线播放| 蜜桃av噜噜一区二区三区小说| 国产欧美精品一区二区三区四区| 在线观看欧美黄色| 国产精品一区在线观看你懂的| 亚洲欧美日韩人成在线播放| 26uuu国产一区二区三区| 99re视频精品| 激情深爱一区二区| 亚洲成人精品在线观看| 中文字幕精品在线不卡| 91精品午夜视频| 91麻豆精东视频| 国产麻豆精品久久一二三| 亚洲成人免费视频| 亚洲三级电影网站| 久久精品日产第一区二区三区高清版 | 韩国在线一区二区| 性久久久久久久| 亚洲欧美日韩国产手机在线| 久久久久久久综合日本| 欧美美女网站色| 在线观看91视频| 97久久超碰精品国产| 国产老妇另类xxxxx| 奇米一区二区三区av| 亚洲一卡二卡三卡四卡| 国产精品久久福利| 国产婷婷色一区二区三区四区| 欧美一区二区福利在线| 3d成人h动漫网站入口| 欧美性三三影院| 色94色欧美sute亚洲线路一ni| 成人激情文学综合网| 风流少妇一区二区| 国产成人亚洲精品青草天美| 精品一区中文字幕| 麻豆免费精品视频| 日本aⅴ免费视频一区二区三区| 亚洲影院理伦片| 亚洲精品中文字幕在线观看| 亚洲欧洲精品一区二区精品久久久 | 91浏览器打开| 日本韩国欧美三级| 91九色最新地址| 欧美亚洲禁片免费| 欧美人与禽zozo性伦| 欧美日韩一区二区三区视频| 欧美午夜不卡视频| 9191国产精品| 精品国产乱码久久久久久闺蜜| 日韩欧美电影在线| 精品电影一区二区| 国产喂奶挤奶一区二区三区| 国产丝袜欧美中文另类| 国产精品天美传媒| 亚洲精品免费在线| 午夜视黄欧洲亚洲| 蜜桃久久久久久| 国产不卡免费视频| 91亚洲永久精品| 欧美亚洲国产一区二区三区va| 欧美日韩你懂得| 欧美α欧美αv大片| 久久久影视传媒| 亚洲精品欧美综合四区| 亚洲成人动漫在线观看| 六月婷婷色综合| 暴力调教一区二区三区| 在线精品视频一区二区三四| 欧美一激情一区二区三区| 日本一区二区免费在线观看视频| 国产精品久久久久三级| 亚洲午夜久久久久久久久久久| 调教+趴+乳夹+国产+精品| 国产尤物一区二区| 色综合中文字幕国产 | 国产酒店精品激情| 99精品视频一区二区三区| 欧美放荡的少妇| 久久久噜噜噜久噜久久综合| 亚洲视频 欧洲视频| 日韩高清在线不卡| a在线欧美一区| 欧美一级免费大片| 国产精品第一页第二页第三页| 亚洲国产va精品久久久不卡综合| 国产一区二区三区蝌蚪| 在线精品亚洲一区二区不卡| 久久久亚洲精品石原莉奈 | 精品视频一区 二区 三区| 精品久久久网站| 一级精品视频在线观看宜春院 | 欧美一区二视频| 中文字幕亚洲一区二区va在线| 亚洲国产精品久久不卡毛片| 国产成人精品网址| 欧美一区二区视频在线观看 | 欧洲av一区二区嗯嗯嗯啊| 久久久国产午夜精品| 午夜精品福利一区二区三区av| 成人午夜私人影院| 欧美va亚洲va| 亚洲h在线观看| 欧美在线制服丝袜| 国产精品色婷婷| 国产呦精品一区二区三区网站| 欧美日韩你懂的| 一区二区三区日韩精品| 成人污污视频在线观看| 2023国产精品视频| 日韩电影在线一区| 欧美精品自拍偷拍| 亚洲影视在线播放| 91尤物视频在线观看| 国产精品网友自拍| 丰满少妇在线播放bd日韩电影| 亚洲精品一区二区三区99| 久久国产夜色精品鲁鲁99| 在线综合视频播放| 蜜臀av在线播放一区二区三区| 色婷婷亚洲一区二区三区| 中文字幕一区二区三区在线不卡 | 亚洲狠狠爱一区二区三区| 色综合天天综合| 亚洲欧洲日本在线| 色婷婷激情综合| 亚洲欧美日韩国产中文在线| 一道本成人在线| 亚洲高清一区二区三区| 91精品国产综合久久久久久久| 午夜国产精品一区|