亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? http:^^www.cs.wisc.edu^computer-vision^pubs.html

?? This data set contains WWW-pages collected from computer science departments of various universities
?? HTML
?? 第 1 頁 / 共 4 頁
字號:
Date: Tue, 05 Nov 1996 00:36:46 GMTServer: NCSA/1.5Content-type: text/htmlLast-modified: Tue, 03 Sep 1996 16:17:44 GMTContent-length: 54887<HTML><HEAD><title>Wisconsin Computer Vision Group Publications</title></HEAD><BODY><h1>Wisconsin Computer Vision Group Publications</h1><HR><BR>Click on any of the following topics to jump to that set of papersin this list of recent publications.  Click on the title to view a (postscript) paper.  If your browser supportsuncompressing of gzip'ed postscript, you'll prefer to click on thecompressed version to speed up downloading.  Size of compressedfile is given in parentheses.  <P><DD><!WA0><!WA0><!WA0><img alg="o" src="http://www.cs.wisc.edu/~dyer/images/redball.gif">    <!WA1><!WA1><!WA1><A HREF="#exploration">Visual Exploration</A><DD><!WA2><!WA2><!WA2><img alg="o" src="http://www.cs.wisc.edu/~dyer/images/redball.gif">    <!WA3><!WA3><!WA3><A HREF="#motion">Motion Analysis</A><DD><!WA4><!WA4><!WA4><img alg="o" src="http://www.cs.wisc.edu/~dyer/images/redball.gif">    <!WA5><!WA5><!WA5><A HREF="#shape">3D Shape Representation</A><DD><!WA6><!WA6><!WA6><img alg="o" src="http://www.cs.wisc.edu/~dyer/images/redball.gif">    <!WA7><!WA7><!WA7><A HREF="#snakes">Deformable Contours</A><DD><!WA8><!WA8><!WA8><img alg="o" src="http://www.cs.wisc.edu/~dyer/images/redball.gif">    <!WA9><!WA9><!WA9><A HREF="#visualization">Visualization</A><P><HR><!WA10><!WA10><!WA10><A HREF="http://www.cs.wisc.edu/computer-vision/">  <!WA11><!WA11><!WA11><IMG SRC="http://www.cs.wisc.edu/~dyer/images/return.gif"> </A>  Return to Wisconsin Computer Vision Group Home Page<HR><P><H2><A NAME="exploration">Visual Exploration</A></H2><UL><LI><!WA12><!WA12><!WA12><img alg="o" src="http://www.cs.wisc.edu/~dyer/images/new.gif">    <B><A NAME="fest96-yu">Shape Recovery from Stationary Surface Contours by Controlled Observer Motion</A></B><BR>     L. Yu and C. R. Dyer,     in <CITE>Advances in Image Understanding: A Festschrift for Azriel Rosenfeld</CITE>, IEEE Computer Society Press, Los Alamitos, Ca., 1996, 177-193.     (<!WA13><!WA13><!WA13><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/fest96-yu.ps">960K postscript</A>)<p><blockquote>The projected deformation of stationary contours and markings onobject surfaces is analyzed in this paper. It is shown that given amarked point on a stationary contour, an active observer can movedeterministically to the osculating plane for that point by observingand controlling the deformation of the projected contour. Reaching theosculating plane enables the observer to recover the object surfaceshape along the contour as well as the Frenet frame of thecontour. Complete local surface recovery requires either twointersecting surface contours and the knowledge of one principledirection, or more than two intersecting contours. To reach theosculating plane, two strategies involving both pure translation and acombination of translation and rotation are analyzed. Once the Frenetframe for the marked point on the contour is recovered, the sameinformation for all points on the contour can be recovered by stayingon osculating planes while moving along the contour. It is also shownthat occluding contours and stationary contours deform in aqualitatively different way and the problem of discriminating betweenthese two types of contours can be resolved before the recovery oflocal surface shape.</blockquote><LI>    <B><A NAME="ijcv94-kutulakos">Recovering Shape by Purposive Viewpoint Adjustment</A></B><BR>     K. N. Kutulakos and C. R. Dyer,     <CITE>Int. J. Computer Vision</CITE> <B>12</B>, 1994, 113-136.      (<!WA14><!WA14><!WA14><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/ijcv94-kutulakos.ps">postscript</A>    or <!WA15><!WA15><!WA15><A NAME="ijcv94-kutulakos" HREF="ftp://ftp.cs.wisc.edu/computer-vision/ijcv94-kutulakos.ps.gz">570K gzip'ed postscript</A>)<br>     (Earlier versions appeared in     <CITE>Proc. Computer Vision and Pattern Recognition Conf.</CITE>,     1992, 16-22       (<!WA16><!WA16><!WA16><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cvpr92-kutulakos.ps">postscript</A>     or <!WA17><!WA17><!WA17><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cvpr92-kutulakos.ps.gz">90K gzip'ed postscript</A>),<BR>     and as Computer Sciences Department     <CITE>Technical Report 1035</CITE>      (<!WA18><!WA18><!WA18><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/tr1035-kutulakos.ps">postscript</A>     or <!WA19><!WA19><!WA19><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/tr1035-kutulakos.ps.gz">160K gzip'ed postscript</A>).) <p> <blockquote>  We present an approach for recovering surface shape from the occluding  contour using an active (i.e., moving) observer.  It is based on a relation  between the geometries of a surface in a scene and its occluding contour: If  the viewing direction of the observer is along a principal direction for a  surface point whose projection is on the contour, surface shape (i.e.,  curvature) at the surface point can be recovered from the contour. Unlike  previous approaches for recovering shape from the occluding contour, we use  an observer that <EM>purposefully</EM> changes viewpoint in order to  achieve a  well-defined geometric relationship with respect to a 3D shape prior to its  recognition.  We show that there is a simple and efficient viewing strategy  that allows the observer to align the viewing direction with one of the two  principal directions for a point on the surface. This strategy depends on  only curvature measurements on the occluding contour and therefore  demonstrates that recovering quantitative shape information from the contour  does not require knowledge of the velocities or accelerations of the  observer.  Experimental results demonstrate that our method can be easily  implemented and can provide reliable shape information from the occluding  contour.</blockquote><LI> <B><A NAME="cvpr94-1-kutulakos">     Occluding Contour Detection using Affine Invariants and Purposive     Viewpoint Control</A></B><BR>     K. N. Kutulakos and C. R. Dyer,     <CITE>Proc. Computer Vision and Pattern Recognition Conf.</CITE>,     1994, 323-330.       (Received Siemens Best Paper Award <!WA20><!WA20><!WA20><img alg="o" src="http://www.cs.wisc.edu/~dyer/images/award.gif">)      (<!WA21><!WA21><!WA21><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cvpr94-1-kutulakos.ps">postscript</A>     or <!WA22><!WA22><!WA22><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cvpr94-1-kutulakos.ps.gz">190K gzip'ed postscript</A>)<P><blockquote>  We present an approach for identifying the occluding contour and  determining its sidedness using an active (i.e., moving) observer.  It is based on the <EM>non-stationarity property</EM> of the visible  rim: When the observer's viewpoint is changed, the visible rim is a  collection of curves that ``slide,'' rigidly or non-rigidly, over  the surface.  We show that the observer can deterministically choose  three views on the tangent plane of selected surface points to  distinguish such curves from stationary surface curves (i.e.,  surface markings). Our approach demonstrates that the occluding  contour can be identified <EM> directly</EM>, i.e., without first  computing surface shape (distance and curvature).</blockquote><LI> <B><A NAME="cvpr94-2-kutulakos">     Global Surface Reconstruction by Purposive Control of Observer Motion</A></B><BR>     K. N. Kutulakos and C. R. Dyer,     <CITE>Artificial Intelligence</CITE> <B>78</B>, No. 1-2, 1995, 147-177.     (<!WA23><!WA23><!WA23><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/aij95-kutulakos.tar.gz">2.0M gzip'ed tar file</A>)     <BR>     (Earlier version appeared in     <CITE>Proc. Computer Vision and Pattern Recognition Conf.</CITE>,     1994, 331-338.     (<!WA24><!WA24><!WA24><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cvpr94-2-kutulakos.ps">postscript</A>     or <!WA25><!WA25><!WA25><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cvpr94-2-kutulakos.ps.gz">370K gzip'ed postscript</A>).)<BR>     (Longer version appears as Computer Sciences Department     <CITE>Technical Report 1141</CITE>     (<!WA26><!WA26><!WA26><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/tr1141-kutulakos.ps">postscript</A>     or <!WA27><!WA27><!WA27><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/tr1141-kutulakos.ps.gz">1.1M gzip'ed postscript</A>).) <P><blockquote>What viewpoint-control strategies are important for performing globalvisual exploration tasks such as searching for specific surfacemarkings, building a global model of an arbitrary object, orrecognizing an object?  In this paper we consider the task ofpurposefully controlling the motion of an active, monocular observerin order to recover a global description of a smooth,arbitrarily-shaped object.  We formulate global surface reconstructionas the task of controlling the motion of the observer so that thevisible rim slides over the maximal, connected, reconstructiblesurface regions intersecting the visible rim at the initialviewpoint. We show that these regions are bounded by a subset of thevisual event curves defined on the surface.<P>By studying the epipolar parameterization, we develop two basicstrategies that allow reconstruction of a surface region around anypoint in a reconstructible surface region.  These strategies controlviewpoint to achieve and maintain a well-defined geometricrelationship with the object's surface, rely only on informationextracted directly from images (e.g., tangents to the occludingcontour), and are simple enough to be performed in real time. Wethen show how global surface reconstruction can be provably achievedby (1) appropriately integrating these strategies to iteratively``grow'' the reconstructed regions, and (2) obeying four simplerules.</blockquote><LI> <B><A NAME="cbvw94-kutulakos">     Building Global Object Models by Purposive Viewpoint Control</A></B><BR>     K. N. Kutulakos, W. B. Seales, and C. R. Dyer,     <CITE>Proc. 2nd CAD-Based Vision Workshop</CITE>,     1994, 169-182.     (<!WA28><!WA28><!WA28><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cbvw94-kutulakos.ps">postscript</A>     or <!WA29><!WA29><!WA29><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cbvw94-kutulakos.ps.gz">760K gzip'ed postscript</A>)<BR>     (An earlier version appeared in     <CITE>Proc. SPIE: Sensor Fusion VI</CITE>,      1993, 368-383     (<!WA30><!WA30><!WA30><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/spie93-kutulakos.ps">postscript</A>     or <!WA31><!WA31><!WA31><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/spie93-kutulakos.ps.gz">740K gzip'ed postscript</A>).)<P><blockquote>We present an approach for recovering a global surface model of anobject from the deformation of the occluding contour using an active(i.e., mobile) observer able to control its motion. In particular, weconsider two problems: (1) How can the observer's viewpoint becontrolled in order to generate a dense sequence of images that allowsincremental reconstruction of an unknown surface, and (2) how can weconstruct a global surface model from the generated image sequence?Solving these two problems is crucial for automatically constructingmodels of objects whose surface is non-convex and self-occludes. Weachieve the first goal by <EM>purposefully</EM> and <EM>qualitatively</EM>controlling the observer's instantaneous direction of motion in orderto control the motion of the visible rim over the surface.  We achievethe second goal by using a calibrated trinocular camera rig and amechanism for controlling the relative position and orientation of theviewed surface with respect to the trinocular rig.</blockquote><LI> <B><A NAME="thesis-kutulakos">     Exploring Three-Dimensional Objects by Controlling the Point of     Observation</A></B><BR>     K. N. Kutulakos, Ph.D. Dissertation,     Computer Sciences Department Technical Report 1251,     University of Wisconsin - Madison, October 1994.     (<!WA32><!WA32><!WA32><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/thesis-kutulakos.ps">postscript</A>     or <!WA33><!WA33><!WA33><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/thesis-kutulakos.zip">5.1M zip-compressed postscript</A>)<P><blockquote>In this thesis we study how controlled movements of a camera can beused to infer properties of a curved object's three-dimensional shape.The unknown geometry of an environment's objects, the effects ofself-occlusion, the depth ambiguities caused by the projectionprocess, and the presence of noise in image measurements are a few ofthe complications that make object-dependent movements of the cameraadvantageous in certain shape recovery tasks.  Such movements cansimplify local shape computations such as curvature estimation, allowuse of weaker camera calibration assumptions, and enable theextraction of global shape information for objects with complexsurface geometry.  The utility of object-dependent camera movements isstudied in the context of three tasks, each involving the extractionof progressively richer information about an object's unknown shape:(1) detecting the occluding contour, (2) estimating surface curvaturefor points projecting to the contour, and (3) building athree-dimensional model for an object's entire surface.  Our mainresult is the development of three distinct active vision strategiesthat solve these three tasks by controlling the motion of a camera.<P>Occluding contour detection and surface curvature estimation areachieved by exploiting the concept of a special viewpoint: Forany image there exist special camera positions from which the object'sview trivializes these tasks.  We show that these positions can bedeterministically reached, and that they enable shape recovery evenwhen few or no markings and discontinuities exist on the object'ssurface, and when differential camera motion measurements cannot beaccurately obtained.<P>A basic issue in building three-dimensional global object models ishow to control the camera's motion so that previously-unreconstructedregions of the object become reconstructed.  A fundamental difficultyis that the set of reconstructed points can change unpredictably(e.g., due to self-occlusions) when ad hoc motion strategies areused.  We show how global model-building can be achieved for genericobjects of arbitrary shape by controlling the camera's motion onautomatically-selected surface tangent and normal planes so that theboundary of the already-reconstructed regions is guaranteed to"slide" over the object's entire surface.<P>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲成a人片在线观看中文| 欧美国产激情一区二区三区蜜月| 久久精品一区二区三区不卡牛牛 | 日韩丝袜美女视频| 三级在线观看一区二区| 欧美日韩国产123区| 日韩高清在线观看| 精品欧美一区二区三区精品久久| 视频一区二区三区中文字幕| 日韩免费性生活视频播放| 国产精品原创巨作av| 国产精品网曝门| 色八戒一区二区三区| 日韩专区中文字幕一区二区| 日韩美女视频在线| 丁香婷婷综合激情五月色| 日韩毛片高清在线播放| 欧美日韩成人一区二区| 国内精品伊人久久久久av影院| 精品少妇一区二区三区日产乱码 | 在线成人小视频| 久久激情综合网| 亚洲国产精品成人综合| 在线亚洲免费视频| 久久av中文字幕片| 亚洲精品久久久久久国产精华液| 在线观看国产日韩| 国产精品一区久久久久| 亚洲视频小说图片| 欧美精品一区二区三区一线天视频| 国产成人免费视频网站 | 色欧美日韩亚洲| 日韩成人免费电影| 中文字幕亚洲一区二区av在线 | 制服丝袜亚洲网站| 日韩精品一区国产麻豆| 成人小视频免费在线观看| 欧美精品一区二| 99精品视频免费在线观看| 偷偷要91色婷婷| 国产欧美日韩不卡免费| 欧美精品在线视频| av电影天堂一区二区在线观看| 亚洲欧美在线aaa| 日韩欧美美女一区二区三区| 色播五月激情综合网| 国产精品白丝jk黑袜喷水| 亚洲午夜在线视频| 日本一区二区综合亚洲| 欧美一区二区高清| 色婷婷久久99综合精品jk白丝| 视频在线观看一区二区三区| 国产精品每日更新| 久久美女艺术照精彩视频福利播放 | 成人爱爱电影网址| 亚洲v中文字幕| 亚洲人成精品久久久久| 久久品道一品道久久精品| 欧美日韩综合一区| 色综合久久久久网| 成人av在线影院| 国产成人av网站| 国产在线不卡一卡二卡三卡四卡| 亚洲综合激情小说| 亚洲色图另类专区| 中文字幕欧美三区| 国产日韩欧美一区二区三区乱码| 91精品国产一区二区三区| 91搞黄在线观看| 97se亚洲国产综合自在线| 国产suv精品一区二区三区| 久久黄色级2电影| 免费高清在线一区| 免费精品视频在线| 日本特黄久久久高潮| 亚洲国产美女搞黄色| 一二三四区精品视频| 一区二区在线免费观看| 一区二区三区 在线观看视频| 久久久久久久久久电影| 国产欧美一区二区在线| 中文字幕欧美国产| 国产精品国产三级国产有无不卡| 国产无遮挡一区二区三区毛片日本| 欧美成人a在线| 精品国产乱码久久久久久1区2区 | 97成人超碰视| 色av成人天堂桃色av| 色婷婷亚洲综合| 欧美性猛交xxxxxxxx| 精品视频1区2区| 日韩午夜三级在线| 久久综合九色综合97_久久久| 欧美精品在线观看一区二区| 欧美一区二区在线不卡| 欧美不卡一区二区| 国产婷婷精品av在线| 亚洲精选视频在线| 亚洲精品一二三区| 日日夜夜一区二区| 国产一区二区三区在线观看免费视频| 一区二区三区在线免费播放| 亚洲午夜一二三区视频| 蜜桃视频一区二区| 国产精品99久久久久久久vr | 国产伦理精品不卡| 成人av影视在线观看| 在线观看亚洲精品视频| 欧美一区二区久久| 中文字幕第一区| 亚洲第一精品在线| 国产成人综合精品三级| 一本在线高清不卡dvd| 91麻豆精品国产91久久久更新时间| 日韩欧美色综合| 亚洲色图清纯唯美| 美女爽到高潮91| 一本久久精品一区二区| 欧美一区二区三区婷婷月色| 日本一区免费视频| 视频精品一区二区| av亚洲精华国产精华精华 | 粉嫩aⅴ一区二区三区四区五区| 不卡一卡二卡三乱码免费网站| 色哟哟欧美精品| 2024国产精品| 午夜精品久久久久久久久| 国产精一区二区三区| 欧美日韩国产美| 亚洲欧洲精品一区二区三区不卡| 国产精品影视在线观看| 欧美三级视频在线观看| 国产欧美日韩麻豆91| 亚洲成a人v欧美综合天堂| av爱爱亚洲一区| 久久综合色8888| 亚洲h在线观看| 91小视频免费看| 久久综合色综合88| 日本怡春院一区二区| 日本高清免费不卡视频| 欧美激情一区二区三区蜜桃视频| 亚洲午夜在线电影| 91女人视频在线观看| 国产亚洲综合色| 美美哒免费高清在线观看视频一区二区| 成人动漫精品一区二区| 久久先锋影音av| 麻豆91在线看| 制服丝袜亚洲色图| 婷婷一区二区三区| 91黄色在线观看| 亚洲欧美日韩久久| eeuss鲁片一区二区三区在线看| 日韩一区二区麻豆国产| 午夜精品福利一区二区蜜股av| 91在线免费播放| 亚洲日本va午夜在线影院| 成人一区二区三区| 久久精品男人天堂av| 国产揄拍国内精品对白| 日韩欧美国产不卡| 日本亚洲视频在线| 日韩一区二区三区观看| 日本不卡一区二区三区高清视频| 色婷婷久久综合| 亚洲午夜精品网| 欧美日韩日日摸| 午夜伊人狠狠久久| 欧洲国内综合视频| 亚洲一二三四在线| 欧美日韩在线三区| 日韩电影免费在线看| 日韩欧美成人午夜| 国内精品国产三级国产a久久| 欧美一二三区精品| 久久97超碰色| 国产午夜亚洲精品不卡| 成人免费看片app下载| 中文文精品字幕一区二区| 国产精品一二三| 综合激情成人伊人| 欧美性色欧美a在线播放| 亚洲国产你懂的| 日韩久久久精品| 国产高清在线精品| 自拍偷拍亚洲欧美日韩| 精品视频1区2区| 极品少妇xxxx偷拍精品少妇| 久久久精品tv| 色美美综合视频| 青青草国产精品亚洲专区无| 久久久久久久久久久久电影| 99国产精品一区| 五月天久久比比资源色| 久久久亚洲精品一区二区三区| 国产成人精品三级| 一区二区三区在线免费播放 | 韩国v欧美v亚洲v日本v| 国产亚洲制服色|