亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? http:^^www.cs.wisc.edu^computer-vision^pubs.html

?? This data set contains WWW-pages collected from computer science departments of various universities
?? HTML
?? 第 1 頁 / 共 4 頁
字號:
Our work emphasizes the need for (1) controlling camera motionthrough efficient processing of the image stream, and (2) designingprovably-correct strategies, i.e., strategies whose success can beaccurately characterized in terms of the geometry of the viewedobject.  For each task, efficiency is achieved by extracting fromeach image only the information necessary to move the cameradifferentially, assuming a dense sequence of images, and using 2Drather than 3D information to control camera motion.  Provablecorrectness is achieved by controlling camera motion based on theoccluding contour's dynamic shape and maintaining specifictask-dependent geometric constraints that relate the camera's motionto the differential geometry of the object.</blockquote><LI> <B><A NAME="cvpr93-kutulakos">     Toward Global Surface Reconstruction by Purposive      Viewpoint Adjustment</A></B><br>     K. N. Kutulakos and C. R. Dyer,      <CITE> Proc. Computer Vision and Pattern      Recognition Conf.</CITE>, 1993, 726-727.     (<!WA34><!WA34><!WA34><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cvpr93-kutulakos.ps">postscript</A>     or <!WA35><!WA35><!WA35><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cvpr93-kutulakos.ps.gz">10K gzip'ed postscript</A>)<P><blockquote>We consider the following problem: How should an observer change viewpointin order to generate a dense image sequence of an arbitrary smooth surfaceso that it can be incrementally reconstructed using the occluding contourand the epipolar parameterization?  We present a collection of qualitativebehaviors that, when integrated appropriately, purposefully controlviewpoint based on the appearance of the surface in order to provably solvethis problem.</blockquote><LI> <B><A NAME="tr1124-kutulakos">     Object Exploration By Purposive, Dynamic Viewpoint      Adjustment</A></B><br>     K. N. Kutulakos, C. R. Dyer, V. J. Lumelsky,      Computer Sciences Department Technical Report 1124,     November 1992.     (<!WA36><!WA36><!WA36><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/tr1124-kutulakos.ps">postscript</A>     or <!WA37><!WA37><!WA37><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/tr1124-kutulakos.ps.gz">110K gzip'ed postscript</A>)<P><blockquote>  We present a viewing strategy for exploring the surface of an unknown  object (i.e., making all of its points visible) by purposefully  controlling the motion of an active observer. It is based on a simple  relation between (1) the instantaneous direction of motion of the  observer, (2) the visibility of points projecting to the occluding  contour, and (3) the surface normal at those points: If the dot product of  the surface normal at such points and the observer's velocity is positive,  the visibility of the points is guaranteed under an infinitesimal  viewpoint change. We show that this leads to an object exploration  strategy in which the observer <EM>purposefully</EM> controls its motion  based on the occluding contour in order to impose structure on the set of  surface points explored, make its representation simple and qualitative,  and provably solve the exploration problem for smooth generic surfaces of  arbitrary shape. Unlike previous approaches where exploration is cast as a  discrete process (i.e., asking where to look next?) and where the  successful exploration of arbitrary objects is not guaranteed, our  approach demonstrates that dynamic viewpoint control through directed  observer motion leads to a qualitative exploration strategy that is  provably-correct, depends only on the dynamic appearance of the  occluding contour, and does not require the recovery of detailed  three-dimensional shape descriptions from every position of the observer.</blockquote><LI> <B><A NAME="icra94-kutulakos">     Provable Strategies for Vision-Guided Exploration in Three Dimensions</A></B><BR>     K. N. Kutulakos, C. R. Dyer, and V. J. Lumelsky,     <CITE>Proc. 1994 IEEE Int. Conf. Robotics and Automation</CITE>,     1994, 1365-1372.     (<!WA38><!WA38><!WA38><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/icra94-kutulakos.ps">postscript</A>     or <!WA39><!WA39><!WA39><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/icra94-kutulakos.ps.gz">210K gzip'ed postscript</A>)<P><blockquote>An approach is presented for exploring an unknown, arbitrary surfacein three-dimensional (3D) space by a mobile robot.  The maincontributions are (1) an analysis of the capabilities a robot mustpossess and the trade-offs involved in the design of an explorationstrategy, and (2) two provably-correct exploration strategies thatexploit these trade-offs and use visual sensors (e.g., cameras andrange sensors) to plan the robot's motion.  No such analysis existedpreviously for the case of a robot moving freely in 3D space.  Theapproach exploits the notion of the <EM>occlusion boundary</EM>, i.e.,the points separating the visible from the occluded parts of anobject.  The occlusion boundary is a collection of curves that``slide'' over the surface when the robot's position is continuouslycontrolled, inducing the visibility of surface points over which theyslide.  The paths generated by our strategies force the occlusionboundary to slide over the entire surface.  The strategies provide abasis for integrating motion planning and visual sensing under acommon computational framework.</blockquote><LI> <B><A NAME="icra93-kutulakos">     Vision-Guided Exploration:  A Step toward General Motion     Planning in Three Dimensions</A></B><br>     K. N. Kutulakos,      V. J. Lumelsky, and C. R. Dyer, <CITE> Proc. 1993 IEEE      Int. Conf. on Robotics and Automation</CITE>, 1993, 289-296.      (<!WA40><!WA40><!WA40><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/icra93-kutulakos.ps">postscript</A>     or <!WA41><!WA41><!WA41><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/icra93-kutulakos.ps.gz">50K gzip'ed postscript</A>)<BR>     (Longer version appears as Computer Sciences Department     <CITE>Technical Report 1111</CITE>     (<!WA42><!WA42><!WA42><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/tr1111-kutulakos.ps">postscript</A>     or <!WA43><!WA43><!WA43><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/tr1111-kutulakos.ps.gz">90K gzip'ed postscript</A>).)<P><blockquote>We present an approach for solving the path planning problem for a mobilerobot operating in an unknown, three dimensional environment containingobstacles of arbitrary shape.  The main contributions of this paper are (1)an analysis of the type of sensing information that is necessary andsufficient for solving the path planning problem in such environments, and(2) the development of a framework for designing a provably-correctalgorithm to solve this problem.  Working from first principles, without anyassumptions about the environment of the robot or its sensing capabilities,our analysis shows that the ability to explore the obstacle surfaces (i.e.,to make all their points visible) is intrinsically linked with the abilityto plan the motion of the robot.  We argue that current approaches to thepath planning problem with incomplete information simply do not extend tothe general three-dimensional case, and that qualitatively differentalgorithms are needed.</blockquote></UL><HR><P><H2><A NAME="motion">Motion Analysis</A></H2><UL><LI><B><A NAME="iccv95-seitz">     Complete Scene Structure from Four Point Correspondences</A></B><BR>     S. M. Seitz and C. R. Dyer,     <CITE>Proc. 5th Int. Conf. Computer Vision</CITE>,     1995, 330-337.     (<!WA44><!WA44><!WA44><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/iccv95-seitz.ps">postscript</A>     or <!WA45><!WA45><!WA45><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/iccv95-seitz.ps.gz">250K gzip'ed postscript</A>)<P><blockquote>A new technique is presented for computing 3D scene structure from point and line features in monocular image sequences.  Unlike previous methods, the technique guarantees the completeness of the recovered scene, ensuring that every scene feature that is detected in each image is reconstructed.The approach relies on the presence of four or more reference features whose correspondences are known in all the images.  Under an orthographic or affine camera model, the parallax of the reference features provides constraints that simplify the recovery of the rest of the visible scene.An efficient recursive algorithm is described that uses a unified framework for point and line features.  The algorithm integrates the tasks of feature correspondence and structure recovery, ensuring that all reconstructible features are tracked.  In addition, the algorithm is immune to outliers andfeature-drift, two weaknesses of existing structure-from-motion techniques.Experimental results are presented for real images.</blockquote><LI> <B><A NAME="nram94-seitz">     Detecting Irregularities in Cyclic Motion</A></B><BR>     S. M. Seitz and C. R. Dyer,     <CITE>Proc. Workshop on Motion of Non-Rigid and Articulated Objects</CITE>,     1994, 178-185.     (<!WA46><!WA46><!WA46><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/nram94-seitz.ps">postscript</A>     or <!WA47><!WA47><!WA47><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/nram94-seitz.ps.gz">910K gzip'ed postscript</A>)<P><blockquote>Real cyclic motions tend not to be perfectly even, i.e., the period varies slightly from one cycle to the next, because of physically important changesin the scene.  A generalization of period is defined for cyclic motionsthat makes periodic variation explicit.  This representation, called the period trace, is compact and purely temporal, describing the evolution of an object or scene without reference to spatial quantities such as position or velocity.  By delimiting cycles and identifying correspondences across cycles, the period trace provides a means of temporally registering a cyclic motion.  In addition, several purely temporal motion features are derived, relating to the nature and location of irregularities.  Results are presented using real image sequences and applications to athletic and medical motion analysis are discussed.</blockquote><LI> <B><A NAME="cvpr94-seitz">     Affine Invariant Detection of Periodic Motion</A></B><BR>     S. M. Seitz and C. R. Dyer,     <CITE>Proc. Computer Vision and Pattern Recognition Conf.</CITE>,     1994, 970-975.     (<!WA48><!WA48><!WA48><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cvpr94-seitz.ps">postscript</A>     or <!WA49><!WA49><!WA49><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cvpr94-seitz.ps.gz">1M gzip'ed postscript</A>)<BR>     (Different version appears as Computer Sciences Department     <CITE>Technical Report 1225</CITE>     (<!WA50><!WA50><!WA50><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/tr1225-seitz.ps">postscript</A>     or <!WA51><!WA51><!WA51><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/tr1225-seitz.ps">890K gzip'ed postscript</A>).)<P><blockquote>Current approaches for detecting periodic motion assume a stationary cameraand place limits on an object's motion.  These approaches rely on theassumption that a periodic motion projects to a set of periodic imagecurves, an assumption that is invalid in general.Using affine-invariance,  wederive necessary and sufficient conditions for an image sequence to bethe projection of a periodic motion.  No restrictions are placed oneither the motion of the camera or the object.Our algorithm is shown to be provably-correct fornoise-free data and is extended to be robust with respect toocclusions and noise.  The extended algorithm is evaluated with real andsynthetic image sequences.</blockquote><LI> <B><A NAME="cvgip93-allmen">     Computing Spatiotemporal Relations for Dynamic Perceptual     Organization</A></B><BR>     M. Allmen and C. R. Dyer,     <CITE>Computer Vision, Graphics and Image Processing:  Image     Understanding</CITE><B> 58</B>, 1993, 338-351.     (<!WA52><!WA52><!WA52><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cvgip93-allmen.ps">postscript</A>     or <!WA53><!WA53><!WA53><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/cvgip93-allmen.ps.gz">200K gzip'ed postscript</A>)<BR>     (Earlier version appeared     as Computer Sciences Department     <CITE>Technical Report 1130</CITE>     (<!WA54><!WA54><!WA54><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/tr1130-allmen.ps">postscript</A>     or <!WA55><!WA55><!WA55><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/tr1130-allmen.ps.gz">200K gzip'ed postscript</A>).)      <P><blockquote>To date, the overwhelming use of motion in computational vision has beento recover the three-dimensional structure of thescene. We propose that there are other, more powerful, uses for motion.Toward this end,we define dynamic perceptual organization as an extensionof the traditional (static) perceptual organization approach.Just asstatic perceptual organization groups coherent features in an image,dynamic perceptual organization groups coherent motions through an imagesequence. Using dynamic perceptual organization, we propose a new paradigmfor motion understanding and show why it can bedone independently of the recovery of scene structure and scene motion.The paradigm starts with a spatiotemporal cube of image data and organizesthe paths of points so thatinteractions between the paths and perceptualmotions such as common, relative and cyclicare made explicit.The results of this can then be used for high-level motion recognition tasks.</blockquote><LI> <B><A NAME="qv93-waldon">     Dynamic Shading, Motion Parallax and Qualitative Shape</A></B><BR>     S. Waldon and C. R. Dyer, <CITE>Proc. IEEE      Workshop on Qualitative Vision</CITE>, 1993, 61-70.     (<!WA56><!WA56><!WA56><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/qv93-waldon.ps">postscript</A>     or <!WA57><!WA57><!WA57><A HREF="ftp://ftp.cs.wisc.edu/computer-vision/qv93-waldon.ps.gz">140K gzip'ed postscript</A>)<P><blockquote>We address the problem of qualitative shaperecovery from moving surfaces. Our analysis is unique in that weconsider specular interreflections and explore the effects of bothmotion parallax and changes in shading. To study this situation wedefine an image flow field called the reflection flow field,which describes the motion of reflection points and the motion of thesurface. From a kinematic analysis, we show that the reflection flowis qualitatively different from the motion parallax because it isdiscontinuous at or near parabolic curves. We also show that when thegradient of the reflected image is strong, gradient-based flowmeasurement techniques approximate the reflection flow field and not

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
中文字幕电影一区| 制服丝袜中文字幕一区| 成人中文字幕电影| 欧美日韩综合在线| 久久精品亚洲一区二区三区浴池| 国产精品免费丝袜| 麻豆国产91在线播放| 色综合天天综合在线视频| 欧美精品电影在线播放| 成人免费在线观看入口| 欧美成人福利视频| 欧美精品一二三| 国产99一区视频免费| 亚洲图片一区二区| 欧美日韩一区二区三区视频| 国产偷v国产偷v亚洲高清| 久久丁香综合五月国产三级网站| 欧美岛国在线观看| 国产成人精品亚洲午夜麻豆| 日本不卡在线视频| 国产精品久久久久久久久免费相片 | 精品无人码麻豆乱码1区2区| 91麻豆自制传媒国产之光| 国产亚洲精品aa| 久久精品国产秦先生| 欧美顶级少妇做爰| 日韩精品免费专区| 欧美日韩电影一区| 天堂一区二区在线免费观看| 9191久久久久久久久久久| 亚洲综合在线五月| 国产揄拍国内精品对白| 激情另类小说区图片区视频区| 欧美国产一区视频在线观看| 欧美一区二区三区视频在线| 亚洲综合成人网| 日韩综合一区二区| 国产福利电影一区二区三区| 欧美精品三级在线观看| 91久久精品一区二区三| 91免费视频网址| 久久人人爽人人爽| 久久99国内精品| 欧美日本国产视频| 欧美三级乱人伦电影| 欧美日韩在线播放三区四区| 欧美高清精品3d| 国产精品私人影院| 极品美女销魂一区二区三区| 一本大道久久精品懂色aⅴ| 麻豆91在线看| 中文字幕亚洲精品在线观看| 久久综合成人精品亚洲另类欧美 | 国产精品久久久久久久久图文区| 国产精品国产三级国产普通话99 | 欧美精品777| 精品电影一区二区| 一区二区三区国产精华| 国产九色精品成人porny | av在线不卡网| 久久亚区不卡日本| 日韩精品一二三区| 97精品国产97久久久久久久久久久久| 日韩免费一区二区| 日韩一区欧美二区| 久久激情五月激情| 秋霞午夜av一区二区三区| 亚洲欧洲日本在线| 欧美浪妇xxxx高跟鞋交| 欧美日韩国产免费一区二区 | 日本成人中文字幕| 911精品国产一区二区在线| 亚洲另类一区二区| 一区二区三区视频在线看| 1000部国产精品成人观看| 亚洲va国产va欧美va观看| 国产一区二区三区电影在线观看| 欧洲一区二区av| 日韩一级免费一区| 亚洲综合色网站| 色婷婷狠狠综合| 亚洲综合色婷婷| 欧洲人成人精品| 婷婷成人综合网| 欧美一级黄色片| 极品美女销魂一区二区三区| 精品理论电影在线观看| 黑人精品欧美一区二区蜜桃| 国产亚洲精品bt天堂精选| 99久久婷婷国产综合精品电影| 日本一区二区三区四区在线视频| 成人app在线观看| 亚洲一区二区三区四区在线免费观看 | 亚洲妇熟xx妇色黄| 日韩精品资源二区在线| 粗大黑人巨茎大战欧美成人| 亚洲欧美日本韩国| 久久综合视频网| 在线看国产一区二区| 国产精品亚洲а∨天堂免在线| 一区二区三区美女| 国产欧美日产一区| 欧美日韩国产高清一区二区三区 | 日韩毛片在线免费观看| 7777精品伊人久久久大香线蕉经典版下载 | 舔着乳尖日韩一区| 中文字幕一区在线观看视频| 欧美一区二区啪啪| av一区二区三区黑人| 欧美一区二区在线视频| 国产经典欧美精品| 久久精品国产亚洲一区二区三区| 亚洲欧美日本韩国| 国产精品美女久久久久aⅴ| 久久只精品国产| 亚洲精品在线观看网站| 精品少妇一区二区三区 | 欧美高清视频不卡网| 欧美中文字幕亚洲一区二区va在线| 成人蜜臀av电影| 色婷婷综合久久久中文字幕| 一本一本大道香蕉久在线精品| 成人国产精品免费观看动漫| 成人福利视频网站| 色综合久久久久久久久| 欧美性受极品xxxx喷水| 制服丝袜在线91| 久久精品视频免费| 国产精品色在线观看| 亚洲另类一区二区| 久草精品在线观看| 国产成人av电影在线| 99国内精品久久| 欧美日韩国产在线观看| 久久久精品日韩欧美| 一区二区三区四区在线播放| 波多野结衣欧美| 高清不卡一区二区在线| 欧美羞羞免费网站| 久久综合久久综合九色| 午夜精彩视频在线观看不卡| 国产一区二区三区精品视频| 欧美吻胸吃奶大尺度电影| 精品国产电影一区二区| 偷拍日韩校园综合在线| av成人动漫在线观看| 久久午夜电影网| 久久99国产精品免费| 欧美在线不卡视频| 亚洲日本va午夜在线影院| 福利电影一区二区三区| 久久一区二区三区四区| 久久精品免费观看| 欧美mv日韩mv国产| 久久www免费人成看片高清| 69堂国产成人免费视频| 亚洲国产精品嫩草影院| 欧美伦理视频网站| 亚洲福利国产精品| 欧美另类久久久品| 午夜精品久久久久久久久久久| 色婷婷av一区| 日韩av中文字幕一区二区三区 | 欧洲精品中文字幕| 一区二区三区高清| 日本高清不卡aⅴ免费网站| 亚洲国产美国国产综合一区二区| 色网站国产精品| 日韩精品乱码av一区二区| 欧美一区二区三区思思人| 九色综合国产一区二区三区| 国产欧美精品一区二区色综合朱莉| 国产成人无遮挡在线视频| 国产精品女同一区二区三区| 99在线精品一区二区三区| 亚洲激情自拍视频| 精品国产乱码久久| 欧美亚洲一区三区| 久久精品国产秦先生| 亚洲免费观看高清完整版在线观看 | 天天爽夜夜爽夜夜爽精品视频| 日韩三级精品电影久久久| 99精品黄色片免费大全| 日韩精彩视频在线观看| 中文字幕一区免费在线观看| 欧美日韩国产一区二区三区地区| 国产一区视频导航| 亚洲综合图片区| 亚洲色图一区二区三区| 久久午夜免费电影| 精品剧情v国产在线观看在线| av激情综合网| 91女神在线视频| 成人免费视频网站在线观看| 久久精品99久久久| 午夜伦欧美伦电影理论片| 亚洲伊人伊色伊影伊综合网| 中文字幕色av一区二区三区| 亚洲国产精品成人综合| 国产日本欧美一区二区|