亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? http:^^www.cs.utexas.edu^users^ml^theory-rev.html

?? This data set contains WWW-pages collected from computer science departments of various universities
?? HTML
?? 第 1 頁 / 共 3 頁
字號(hào):
MIME-Version: 1.0
Server: CERN/3.0
Date: Tuesday, 07-Jan-97 15:56:22 GMT
Content-Type: text/html
Content-Length: 32358
Last-Modified: Wednesday, 28-Aug-96 15:56:47 GMT

<title>Theory Refinement</title><h1>Theory Refinement</h1>To view a paper, click on the open book image. <br> <br><ol><! ===========================================================================><a name="rapture-dissertation-96.ps.Z"</a><b><li>Combining Symbolic and Connectionist Learning Methods to RefineCertainty-Factor Rule-Bases<br></b>J. Jeffrey Mahoney<br>Ph.D. Thesis, Department of Computer Sciences, University of Texas at Austin, May, 1996.<p><blockquote>This research describes the system RAPTURE, which is designed torevise rule bases expressed in certainty-factor format.  Recentstudies have shown that learning is facilitated when biased withdomain-specific expertise, and have also shown that many real-worlddomains require some form of probabilistic or uncertain reasoning inorder to successfully represent target concepts. RAPTURE was designedto take advantage of both of these results. <p>Beginning with a set of certainty-factor rules, along withaccurately-labelled training examples, RAPTURE makes use of bothsymbolic and connectionist learning techniques for revising the rules,in order that they correctly classify all of the training examples. Amodified version of backpropagation is used to adjust the certaintyfactors of the rules, ID3's information-gain heuristic is used to addnew rules, and the Upstart algorithm is used to create new hiddenterms in the rule base. <p>Results on refining four real-world rule bases are presented thatdemonstrate the effectiveness of this combined approach.  Two of theserule bases were designed to identify particular areas in strands ofDNA, one is for identifying infectious diseases, and the fourthattempts to diagnose soybean diseases.  The results of RAPTURE arecompared with those of backpropagation, C4.5, KBANN, and otherlearning systems.  RAPTURE generally produces sets of rules that aremore accurate that these other systems, often creating smaller sets ofrules and using less training time. <p></blockquote><!WA0><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/rapture-dissertation-96.ps.Z"><!WA1><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="banner-proposal-95.ps.Z"</a><b><li> Refinement of Bayesian Networks by Combining Connectionist andSymbolic Techniques <br></b>Sowmya Ramanchandran<br>Ph.D. proposal, Department of Computer Sciences, University of Texasat Austin, 1995. <p><blockquote>Bayesian networks provide a mathematically sound formalism forrepresenting and reasoning with uncertain knowledge and are as suchwidely used. However, acquiring and capturing knowledge in thisframework is difficult. There is a growing interest in formulatingtechniques for learning Bayesian networks inductively. While theproblem of learning a Bayesian network, given complete data, has beenexplored in some depth, the problem of learning networks withunobserved causes is still open. In this proposal, we view thisproblem from the perspective of theory revision and present a novelapproach which adapts techniques developed for revising theories insymbolic and connectionist representations.  Thus, we assume that thelearner is given an initial approximate network (usually obtained froma expert). Our technique inductively revises the network to fit thedata better.  Our proposed system has two components: one componentrevises the parameters of a Bayesian network of known structure, andthe other component revises the structure of the network. Thecomponent for parameter revision maps the given Bayesian network intoa multi-layer feedforward neural network, with the parameters mappedto weights in the neural network, and uses standard backpropagationtechniques to learn the weights. The structure revision component usesqualitative analysis to suggest revisions to the network when it failsto predict the data accurately. The first component has beenimplemented and we will present results from experiments on real worldclassification problems which show our technique to be effective.  Wewill also discuss our proposed structure revision algorithm, our plansfor experiments to evaluate the system, as well as some extensions tothe system.</blockquote><!WA2><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/banner-proposal-95.ps.Z"><!WA3><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="assert-aaai-96.ps.Z"</a><b><li>A Novel Application of Theory Refinement to Student Modeling<br></b>Paul Baffes and Raymond J. Mooney<br><cite>Proceedings of the Thirteenth National Conference on Aritificial Intelligence</cite>,pp. 403-408, Portland, OR, August, 1996. (AAAI-96)<p><blockquote>Theory refinement systems developed in machine learning automaticallymodify a knowledge base to render it consistent with a set ofclassified training examples. We illustrate a novel application ofthese techniques to the problem of constructing a student model for anintelligent tutoring system (ITS). Our approach is implemented in anITS authoring system called Assert which uses theory refinement tointroduce errors into an initially correct knowledge base so that itmodels incorrect student behavior. The efficacy of the approach hasbeen demonstrated by evaluating a tutor developed with Assert with 75students tested on a classification task covering concepts from anintroductory course on the C++ programming language. The systemproduced reasonably accurate models and students who received feedbackbased on these models performed significantly better on a post testthan students who received simple reteaching.</blockquote><!WA4><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/assert-aaai-96.ps.Z"><!WA5><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="assert-jaied-95.ps.Z"</a><b><li> Refinement-Based Student Modeling and Automated Bug Library Construction<br></b>Paul Baffes and Raymond Mooney<br><cite>Journal of Artificial Intelligence in Education</cite>, 7, 1(1996), pp. 75-116.<p><blockquote>A critical component of model-based intelligent tutoring sytems is amechanism for capturing the conceptual state of the student, whichenables the system to tailor its feedback to suit individual strengthsand weaknesses.  To be useful such a modeling technique must be<em>practical</em>, in the sense that models are easy to construct, and<em>effective</em>, in the sense that using the model actually impacts studentlearning.  This research presents a new student modeling techniquewhich can automatically capture novel student errors using onlycorrect domain knowledge, and can automatically compile trends acrossmultiple student models.  This approach has been implemented as acomputer program, ASSERT, using a machine learning technique called<em>theory refinement</em>, which is a method for automatically revising aknowledge base to be consistent with a set of examples.  Using aknowledge base that correctly defines a domain and examples of astudent's behavior in that domain, ASSERT models student errors bycollecting any refinements to the correct knowledege base which arenecessary to account for the student's behavior.  The efficacy of theapproach has been demonstrated by evaluating ASSERT using 100 studentstested on a classification task covering concepts from an introductorycourse on the C++ programming language.  Students who receivedfeedback based on the models automatically generated by ASSERTperformed significantly better on a post test than students whoreceived simple teaching.</blockquote><!WA6><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/assert-jaied-95.ps.Z"><!WA7><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="banner-icnn-96.ps.Z"</a><b><li>Revising Bayesian Network Parameters Using Backpropagation<br></b>Sowmya Ramachandran and Raymond J. Mooney<br><cite>Proceedings of the International Conference on NeuralNetworks (ICNN-96)</cite>, Special Session on Knowledge-Based ArtificialNeural Networks, Washington DC, June 1996. <p><blockquote>The problem of learning Bayesian networks with hidden variables is known tobe a hard problem. Even the simpler task of learning just the conditionalprobabilities on a Bayesian network with hidden variables is hard. In thispaper, we present an approach that learns the conditional probabilities ona Bayesian network with hidden variables by transforming it into amulti-layer feedforward neural network (ANN). The conditional probabilitiesare mapped onto weights in the ANN, which are then learned using standardbackpropagation techniques. To avoid the problem of exponentially largeANNs, we focus on Bayesian networks with noisy-or and noisy-andnodes. Experiments on real world classification problems demonstrate theeffectiveness of our technique.</blockquote><!WA8><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/banner-icnn-96.ps.Z"><!WA9><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="assert-dissertation-94.tar.Z" </a><b> <li> Automatic Student Modeling and Bug Library Construction using Theory Refinement <br> </b>  Paul T. Baffes <br>Ph.D. Thesis, Department of Computer Sciences, University of Texas atAustin, December, 1994.<p><blockquote>The history of computers in education can be characterized by acontinuing effort to construct intelligent tutorial programswhich can adapt to the individual needs of a student in aone-on-one setting. A critical component of these intelligenttutorials is a mechanism for modeling the conceptual state of thestudent so that the system is able to tailor its feedback to suitindividual strengths and weaknesses. The primary contribution ofthis research is a new student modeling technique which canautomatically capture novel student errors using only correctdomain knowledge, and can automatically compile trends acrossmultiple student models into bug libraries. This approach hasbeen implemented as a computer program, ASSERT, using a machinelearning technique called theory refinement which is a method forautomatically revising a knowledge base to be consistent with aset of examples. Using a knowledge base that correctly defines adomain and examples of a student's behavior in that domain,ASSERT models student errors by collecting any refinements to thecorrect knowledge base which are necessary to account for thestudent's behavior. The efficacy of the approach has beendemonstrated by evaluating ASSERT using 100 students tested on aclassification task using concepts from an introductory course onthe C++ programming language. Students who received feedback

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
成人禁用看黄a在线| 久草热8精品视频在线观看| 91成人免费网站| 久久精品国产色蜜蜜麻豆| 久久精品夜夜夜夜久久| 精品福利av导航| 亚洲精品一区二区三区蜜桃下载| 国产麻豆视频精品| 精品国产凹凸成av人导航| 一区二区三区色| 色综合久久天天综合网| 欧美mv日韩mv亚洲| 成人午夜视频在线观看| 青青草91视频| 亚洲人成在线播放网站岛国| 国产精品天干天干在观线| 91精品国产综合久久精品| a4yy欧美一区二区三区| 国产成人av福利| 久久99深爱久久99精品| 国产精品亲子乱子伦xxxx裸| 欧美高清视频在线高清观看mv色露露十八| 国模无码大尺度一区二区三区| 精品理论电影在线观看| 欧美亚日韩国产aⅴ精品中极品| 成人激情电影免费在线观看| 国产成人精品一区二区三区四区| 亚洲猫色日本管| 国产视频一区在线播放| 日韩一级高清毛片| 91麻豆精品在线观看| 国产一区二区久久| 性欧美疯狂xxxxbbbb| 久久老女人爱爱| 国产一区二区伦理片| 亚洲在线中文字幕| 久久不见久久见中文字幕免费| 亚洲国产乱码最新视频| 亚洲综合激情小说| 亚洲国产欧美在线| 国产精品久久久久久久久果冻传媒 | 国内国产精品久久| 亚洲丝袜美腿综合| 欧美日韩日日夜夜| 国产伦精品一区二区三区视频青涩| 亚洲欧洲精品成人久久奇米网| 中文字幕一区二区三区蜜月| 蜜桃精品在线观看| 亚洲国产成人一区二区三区| 亚洲乱码国产乱码精品精小说| 亚洲一级在线观看| 久久99国产精品免费| 91免费在线播放| 日韩欧美高清在线| 亚洲丝袜制服诱惑| 精品一区二区三区在线播放| 色综合久久88色综合天天6| 日韩一区二区三区视频| 亚洲三级理论片| 国产主播一区二区三区| 欧美熟乱第一页| 中文字幕av免费专区久久| 日韩精品一区第一页| youjizz久久| 日韩欧美一二三区| 亚洲一区二区欧美日韩| 丁香另类激情小说| 欧美大片日本大片免费观看| 亚洲男帅同性gay1069| 国产伦精品一区二区三区免费迷 | 久久精品国产99国产| 色综合视频一区二区三区高清| 精品少妇一区二区三区| 亚洲一区精品在线| 成人动漫一区二区在线| 亚洲精品在线网站| 日韩精品亚洲专区| 91国偷自产一区二区三区观看| 久久精品视频一区| 免费观看一级欧美片| 欧美私人免费视频| 综合欧美亚洲日本| 国产大片一区二区| 2019国产精品| 秋霞影院一区二区| 欧美日韩高清在线播放| 亚洲免费av在线| 成人av资源在线| 久久久久久久久久美女| 日本不卡视频一二三区| 欧美午夜免费电影| 亚洲精品欧美二区三区中文字幕| 国产成人夜色高潮福利影视| 日韩精品影音先锋| 久久精品国产99国产精品| 日韩视频免费观看高清在线视频| 亚洲一区二区三区中文字幕| 99麻豆久久久国产精品免费| 国产精品午夜电影| 成人午夜免费视频| 欧美激情艳妇裸体舞| 国产成人亚洲综合a∨婷婷图片| 久久亚洲精华国产精华液| 激情欧美一区二区| 久久综合九色综合久久久精品综合| 美女www一区二区| 欧美mv日韩mv国产网站| 久久国产剧场电影| 精品女同一区二区| 国产麻豆成人传媒免费观看| 国产欧美精品一区二区色综合朱莉| 国产美女精品在线| 国产精品久久三| 成人动漫一区二区| 亚洲色大成网站www久久九九| 91丝袜美女网| 亚洲自拍偷拍综合| 欧美日韩一区三区四区| 婷婷国产在线综合| 日韩一区国产二区欧美三区| 精品一二三四在线| 国产欧美日韩在线观看| 成人av网址在线| 亚洲精品久久7777| 欧美日韩国产综合草草| 免费观看成人鲁鲁鲁鲁鲁视频| 日韩美女一区二区三区四区| 国产精品资源在线看| 国产精品伦一区二区三级视频| 波多野结衣中文字幕一区| 亚洲欧美日韩小说| 91精品欧美一区二区三区综合在 | 日欧美一区二区| 日韩精品一区在线| 成人精品免费网站| 亚洲精品成人a在线观看| 精品污污网站免费看| 久久精品国产成人一区二区三区| 久久综合九色综合久久久精品综合| 成人av资源在线观看| 亚洲福利电影网| 精品国产91乱码一区二区三区| 成人丝袜高跟foot| 亚洲午夜久久久久中文字幕久| 日韩欧美久久一区| www.亚洲国产| 天涯成人国产亚洲精品一区av| 久久久蜜桃精品| 欧美色窝79yyyycom| 国产综合色视频| 亚洲一区二区在线免费看| 日韩女优制服丝袜电影| gogo大胆日本视频一区| 日本不卡123| 中文字幕在线免费不卡| 欧美一区二区日韩一区二区| 国产成人亚洲综合a∨婷婷图片 | 成人av电影观看| 首页国产欧美久久| 中文字幕免费不卡在线| 欧美日本一区二区| 99国内精品久久| 看电影不卡的网站| 亚洲最新视频在线播放| 久久精品一二三| 制服丝袜中文字幕一区| 成人久久视频在线观看| 久久精品国产99| 亚洲狠狠爱一区二区三区| 久久久青草青青国产亚洲免观| 欧美日韩亚洲另类| 成人午夜看片网址| 奇米综合一区二区三区精品视频| 国产精品久久久久久久久果冻传媒 | 国产成人av一区| 日韩国产欧美三级| 亚洲免费观看高清完整版在线观看熊 | 亚洲一卡二卡三卡四卡无卡久久| 久久精子c满五个校花| 7777精品伊人久久久大香线蕉完整版 | 91影视在线播放| 国产在线不卡视频| 日韩高清不卡在线| 亚洲黄色在线视频| 国产精品久久三区| 国产人久久人人人人爽| 欧美成人性福生活免费看| 欧美日韩免费不卡视频一区二区三区| 国产成人亚洲综合a∨猫咪| 美洲天堂一区二卡三卡四卡视频 | 99久精品国产| 成人一区二区三区视频| 国产一区二区91| 久久99久久久欧美国产| 日韩专区中文字幕一区二区| 一区二区三区欧美激情| 亚洲欧美另类久久久精品 | 精品一区二区三区免费| 日本欧美大码aⅴ在线播放| 亚洲r级在线视频|