亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? http:^^www.cs.utexas.edu^users^ml^theory-rev.html

?? This data set contains WWW-pages collected from computer science departments of various universities
?? HTML
?? 第 1 頁 / 共 3 頁
字號:
MIME-Version: 1.0
Server: CERN/3.0
Date: Tuesday, 07-Jan-97 15:56:22 GMT
Content-Type: text/html
Content-Length: 32358
Last-Modified: Wednesday, 28-Aug-96 15:56:47 GMT

<title>Theory Refinement</title><h1>Theory Refinement</h1>To view a paper, click on the open book image. <br> <br><ol><! ===========================================================================><a name="rapture-dissertation-96.ps.Z"</a><b><li>Combining Symbolic and Connectionist Learning Methods to RefineCertainty-Factor Rule-Bases<br></b>J. Jeffrey Mahoney<br>Ph.D. Thesis, Department of Computer Sciences, University of Texas at Austin, May, 1996.<p><blockquote>This research describes the system RAPTURE, which is designed torevise rule bases expressed in certainty-factor format.  Recentstudies have shown that learning is facilitated when biased withdomain-specific expertise, and have also shown that many real-worlddomains require some form of probabilistic or uncertain reasoning inorder to successfully represent target concepts. RAPTURE was designedto take advantage of both of these results. <p>Beginning with a set of certainty-factor rules, along withaccurately-labelled training examples, RAPTURE makes use of bothsymbolic and connectionist learning techniques for revising the rules,in order that they correctly classify all of the training examples. Amodified version of backpropagation is used to adjust the certaintyfactors of the rules, ID3's information-gain heuristic is used to addnew rules, and the Upstart algorithm is used to create new hiddenterms in the rule base. <p>Results on refining four real-world rule bases are presented thatdemonstrate the effectiveness of this combined approach.  Two of theserule bases were designed to identify particular areas in strands ofDNA, one is for identifying infectious diseases, and the fourthattempts to diagnose soybean diseases.  The results of RAPTURE arecompared with those of backpropagation, C4.5, KBANN, and otherlearning systems.  RAPTURE generally produces sets of rules that aremore accurate that these other systems, often creating smaller sets ofrules and using less training time. <p></blockquote><!WA0><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/rapture-dissertation-96.ps.Z"><!WA1><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="banner-proposal-95.ps.Z"</a><b><li> Refinement of Bayesian Networks by Combining Connectionist andSymbolic Techniques <br></b>Sowmya Ramanchandran<br>Ph.D. proposal, Department of Computer Sciences, University of Texasat Austin, 1995. <p><blockquote>Bayesian networks provide a mathematically sound formalism forrepresenting and reasoning with uncertain knowledge and are as suchwidely used. However, acquiring and capturing knowledge in thisframework is difficult. There is a growing interest in formulatingtechniques for learning Bayesian networks inductively. While theproblem of learning a Bayesian network, given complete data, has beenexplored in some depth, the problem of learning networks withunobserved causes is still open. In this proposal, we view thisproblem from the perspective of theory revision and present a novelapproach which adapts techniques developed for revising theories insymbolic and connectionist representations.  Thus, we assume that thelearner is given an initial approximate network (usually obtained froma expert). Our technique inductively revises the network to fit thedata better.  Our proposed system has two components: one componentrevises the parameters of a Bayesian network of known structure, andthe other component revises the structure of the network. Thecomponent for parameter revision maps the given Bayesian network intoa multi-layer feedforward neural network, with the parameters mappedto weights in the neural network, and uses standard backpropagationtechniques to learn the weights. The structure revision component usesqualitative analysis to suggest revisions to the network when it failsto predict the data accurately. The first component has beenimplemented and we will present results from experiments on real worldclassification problems which show our technique to be effective.  Wewill also discuss our proposed structure revision algorithm, our plansfor experiments to evaluate the system, as well as some extensions tothe system.</blockquote><!WA2><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/banner-proposal-95.ps.Z"><!WA3><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="assert-aaai-96.ps.Z"</a><b><li>A Novel Application of Theory Refinement to Student Modeling<br></b>Paul Baffes and Raymond J. Mooney<br><cite>Proceedings of the Thirteenth National Conference on Aritificial Intelligence</cite>,pp. 403-408, Portland, OR, August, 1996. (AAAI-96)<p><blockquote>Theory refinement systems developed in machine learning automaticallymodify a knowledge base to render it consistent with a set ofclassified training examples. We illustrate a novel application ofthese techniques to the problem of constructing a student model for anintelligent tutoring system (ITS). Our approach is implemented in anITS authoring system called Assert which uses theory refinement tointroduce errors into an initially correct knowledge base so that itmodels incorrect student behavior. The efficacy of the approach hasbeen demonstrated by evaluating a tutor developed with Assert with 75students tested on a classification task covering concepts from anintroductory course on the C++ programming language. The systemproduced reasonably accurate models and students who received feedbackbased on these models performed significantly better on a post testthan students who received simple reteaching.</blockquote><!WA4><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/assert-aaai-96.ps.Z"><!WA5><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="assert-jaied-95.ps.Z"</a><b><li> Refinement-Based Student Modeling and Automated Bug Library Construction<br></b>Paul Baffes and Raymond Mooney<br><cite>Journal of Artificial Intelligence in Education</cite>, 7, 1(1996), pp. 75-116.<p><blockquote>A critical component of model-based intelligent tutoring sytems is amechanism for capturing the conceptual state of the student, whichenables the system to tailor its feedback to suit individual strengthsand weaknesses.  To be useful such a modeling technique must be<em>practical</em>, in the sense that models are easy to construct, and<em>effective</em>, in the sense that using the model actually impacts studentlearning.  This research presents a new student modeling techniquewhich can automatically capture novel student errors using onlycorrect domain knowledge, and can automatically compile trends acrossmultiple student models.  This approach has been implemented as acomputer program, ASSERT, using a machine learning technique called<em>theory refinement</em>, which is a method for automatically revising aknowledge base to be consistent with a set of examples.  Using aknowledge base that correctly defines a domain and examples of astudent's behavior in that domain, ASSERT models student errors bycollecting any refinements to the correct knowledege base which arenecessary to account for the student's behavior.  The efficacy of theapproach has been demonstrated by evaluating ASSERT using 100 studentstested on a classification task covering concepts from an introductorycourse on the C++ programming language.  Students who receivedfeedback based on the models automatically generated by ASSERTperformed significantly better on a post test than students whoreceived simple teaching.</blockquote><!WA6><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/assert-jaied-95.ps.Z"><!WA7><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="banner-icnn-96.ps.Z"</a><b><li>Revising Bayesian Network Parameters Using Backpropagation<br></b>Sowmya Ramachandran and Raymond J. Mooney<br><cite>Proceedings of the International Conference on NeuralNetworks (ICNN-96)</cite>, Special Session on Knowledge-Based ArtificialNeural Networks, Washington DC, June 1996. <p><blockquote>The problem of learning Bayesian networks with hidden variables is known tobe a hard problem. Even the simpler task of learning just the conditionalprobabilities on a Bayesian network with hidden variables is hard. In thispaper, we present an approach that learns the conditional probabilities ona Bayesian network with hidden variables by transforming it into amulti-layer feedforward neural network (ANN). The conditional probabilitiesare mapped onto weights in the ANN, which are then learned using standardbackpropagation techniques. To avoid the problem of exponentially largeANNs, we focus on Bayesian networks with noisy-or and noisy-andnodes. Experiments on real world classification problems demonstrate theeffectiveness of our technique.</blockquote><!WA8><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/banner-icnn-96.ps.Z"><!WA9><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="assert-dissertation-94.tar.Z" </a><b> <li> Automatic Student Modeling and Bug Library Construction using Theory Refinement <br> </b>  Paul T. Baffes <br>Ph.D. Thesis, Department of Computer Sciences, University of Texas atAustin, December, 1994.<p><blockquote>The history of computers in education can be characterized by acontinuing effort to construct intelligent tutorial programswhich can adapt to the individual needs of a student in aone-on-one setting. A critical component of these intelligenttutorials is a mechanism for modeling the conceptual state of thestudent so that the system is able to tailor its feedback to suitindividual strengths and weaknesses. The primary contribution ofthis research is a new student modeling technique which canautomatically capture novel student errors using only correctdomain knowledge, and can automatically compile trends acrossmultiple student models into bug libraries. This approach hasbeen implemented as a computer program, ASSERT, using a machinelearning technique called theory refinement which is a method forautomatically revising a knowledge base to be consistent with aset of examples. Using a knowledge base that correctly defines adomain and examples of a student's behavior in that domain,ASSERT models student errors by collecting any refinements to thecorrect knowledge base which are necessary to account for thestudent's behavior. The efficacy of the approach has beendemonstrated by evaluating ASSERT using 100 students tested on aclassification task using concepts from an introductory course onthe C++ programming language. Students who received feedback

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
一本久久a久久免费精品不卡| 欧美在线综合视频| 色婷婷av一区二区三区软件| 5566中文字幕一区二区电影 | 一区二区三区四区视频精品免费| 婷婷开心激情综合| 99精品欧美一区二区三区综合在线| 欧美精选在线播放| 一区二区三区资源| 成人自拍视频在线观看| 精品成a人在线观看| 亚洲午夜激情av| 99免费精品视频| 久久青草欧美一区二区三区| 亚洲福利一区二区| 色丁香久综合在线久综合在线观看| 国产亚洲一二三区| 国模娜娜一区二区三区| 欧美日韩欧美一区二区| 亚洲少妇最新在线视频| 在线国产电影不卡| 亚洲欧美区自拍先锋| 国产mv日韩mv欧美| 久久久久久综合| 精品一区二区在线播放| 91精品国产欧美一区二区成人| 亚洲一区免费观看| 在线视频国内自拍亚洲视频| 亚洲九九爱视频| 色伊人久久综合中文字幕| 日本一区二区久久| 成人毛片在线观看| 中文字幕一区二区三区精华液| 不卡的av网站| 亚洲欧美色综合| 色老汉一区二区三区| 亚洲精品美腿丝袜| 91电影在线观看| 一区二区三区国产精品| 在线观看日韩电影| 午夜精品在线视频一区| 91精品久久久久久蜜臀| 免费久久精品视频| 久久久精品tv| 99精品国产热久久91蜜凸| 亚洲欧洲另类国产综合| 在线观看国产精品网站| 亚洲国产成人av网| 777欧美精品| 国产裸体歌舞团一区二区| 国产情人综合久久777777| 99免费精品在线观看| 亚洲综合色在线| 日韩三级电影网址| 国产成人av自拍| 亚洲欧美电影一区二区| 欧美日韩www| 国产一区二区三区四区在线观看| 中文字幕 久热精品 视频在线| 91在线一区二区三区| 亚洲二区在线视频| 久久亚洲影视婷婷| 91丨九色丨国产丨porny| 亚洲成人精品一区二区| 久久综合色8888| 在线免费不卡电影| 韩国女主播成人在线| 一区二区三区四区乱视频| 精品国产一区二区三区av性色 | 国产精品理伦片| 欧美日韩免费电影| 国产精品一区一区| 亚洲国产精品久久久久秋霞影院| 精品日本一线二线三线不卡| 色婷婷综合久色| 国产一区二区在线视频| 国产成人小视频| 一区二区三区在线免费观看| 精品国产乱码久久久久久1区2区| 色综合久久九月婷婷色综合| 国产乱码一区二区三区| 性感美女极品91精品| 中文字幕av一区二区三区高| 欧美一级黄色录像| 在线亚洲人成电影网站色www| 久久66热偷产精品| 亚洲成人一区二区在线观看| 日本一区二区不卡视频| 日韩一级大片在线观看| 在线精品视频一区二区三四| 大陆成人av片| 韩国精品一区二区| 亚洲国产精品嫩草影院| 亚洲柠檬福利资源导航| 国产无遮挡一区二区三区毛片日本| 欧美性做爰猛烈叫床潮| 97超碰欧美中文字幕| 国产成人自拍高清视频在线免费播放| 视频在线观看国产精品| 亚洲最大成人网4388xx| 最新国产の精品合集bt伙计| 2欧美一区二区三区在线观看视频| 欧美综合久久久| 在线看日本不卡| 91电影在线观看| 在线中文字幕一区二区| 色香色香欲天天天影视综合网 | 国产一区日韩二区欧美三区| 日本不卡视频在线观看| 视频精品一区二区| 日本aⅴ免费视频一区二区三区| 亚洲成a人片综合在线| 亚洲精品中文字幕在线观看| 自拍偷拍国产精品| 亚洲卡通动漫在线| 亚洲永久免费av| 五月天国产精品| 视频一区视频二区中文字幕| 婷婷一区二区三区| 久久精品国产亚洲一区二区三区| 美女在线视频一区| 国产在线看一区| 国产成人精品免费看| 成人av在线电影| 色婷婷av一区| 7777精品伊人久久久大香线蕉的| 91精品视频网| 精品久久人人做人人爰| 久久综合狠狠综合久久综合88| 久久九九久精品国产免费直播| 国产女人aaa级久久久级 | 久久久久久久久久久久电影| 久久婷婷久久一区二区三区| 国产欧美日韩卡一| 亚洲欧美欧美一区二区三区| 亚洲成人免费av| 国产乱码精品1区2区3区| 成人一区二区三区| 欧洲国内综合视频| 日韩欧美一二区| 欧美国产丝袜视频| 亚洲尤物视频在线| 国产在线精品一区二区不卡了| 成人免费毛片嘿嘿连载视频| 欧美综合在线视频| 26uuu国产一区二区三区| 国产精品久久久久精k8| 亚洲国产成人av| 国产一区二区精品在线观看| 色婷婷久久久久swag精品| 欧美一区二区三区不卡| 国产精品女同互慰在线看| 香蕉久久一区二区不卡无毒影院| 久久99精品国产麻豆婷婷| 91丨porny丨中文| 欧美成人精品高清在线播放| 亚洲日本在线a| 韩国三级电影一区二区| 在线亚洲免费视频| 久久久精品tv| 日本v片在线高清不卡在线观看| 成人性生交大片免费看视频在线 | 在线看国产一区二区| 久久久久一区二区三区四区| 亚洲影视资源网| 高清不卡在线观看av| 欧美高清hd18日本| 中文字幕字幕中文在线中不卡视频| 蜜桃一区二区三区在线| 色综合久久88色综合天天免费| 久久综合中文字幕| 日本在线不卡视频| 91色乱码一区二区三区| 2021久久国产精品不只是精品| 亚洲国产综合视频在线观看| 成人午夜免费视频| 精品国产乱码久久久久久图片| 亚洲成人免费观看| 一本色道亚洲精品aⅴ| 国产日韩欧美亚洲| 精品一区二区国语对白| 51久久夜色精品国产麻豆| 亚洲乱码精品一二三四区日韩在线| 国产激情视频一区二区在线观看| 欧美一区二区三区免费大片| 亚洲成人av一区二区三区| 91在线免费视频观看| 国产免费成人在线视频| 国产毛片一区二区| 精品国产一区二区三区不卡 | 91在线精品秘密一区二区| 精品久久久久99| 久久精品国产精品亚洲红杏| 欧美日韩一本到| 亚洲国产另类av| 欧美在线观看一区二区| 亚洲精品第1页| 欧美午夜精品一区| 亚洲成人在线观看视频| 欧美日韩精品一区二区天天拍小说|