亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? http:^^www.cs.utexas.edu^users^ml^theory-rev.html

?? This data set contains WWW-pages collected from computer science departments of various universities
?? HTML
?? 第 1 頁 / 共 3 頁
字號:
based on the models automatically generated by ASSERT performedsignificantly better on a post test than students who receivedsimple reteaching.</blockquote><! <!WA10><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/assert-dissertation-94.tar.Z"><! <!WA11><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="rapture-ml-94.ps.Z" </a><b> <li> Comparing Methods For Refining Certainty Factor Rule-Bases </b> <br> J. Jeffrey Mahoney and Raymond J. Mooney <br> <cite> Proceedings of the Eleventh International Workshop on MachineLearning</cite>, pp. 173-180, Rutgers, NJ, July 1994. (ML-94) <p><blockquote>This paper compares two methods for refining uncertain knowledge bases usingpropositional certainty-factor rules.  The first method, implemented in theRAPTURE system, employs neural-network training to refine the certaintiesof existing rules but uses a symbolic technique to add new rules.  The secondmethod, based on the one used in the KBANN system, initially adds acomplete set of potential new rules with very low certainty and allowsneural-network training to filter and adjust these rules.  Experimental resultsindicate that the former method results in significantly faster training andproduces much simpler refined rule bases with slightly greater accuracy.</blockquote><!WA12><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/rapture-ml-94.ps.Z"><!WA13><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="rapture-isiknh-94.ps.Z" </a><b> <li> Modifying Network Architectures For Certainty-Factor Rule-Base Revision</b> <br>  J. Jeffrey Mahoney and Raymond J. Mooney <br> <cite> Proceedings of the International Symposium on IntegratingKnowledge and Neural Heuristics 1994</cite>, pp. 75-85, Pensacola, FL,May 1994. (ISIKNH-94) <p><blockquote> This paper describes RAPTURE --- a system for revisingprobabilistic rule bases that converts symbolic rules into aconnectionist network, which is then trained via connectionisttechniques.  It uses a modified version of backpropagation to refinethe certainty factors of the rule base, and uses ID3'sinformation-gain heuristic (Quinlan) to add new rules.  Work iscurrently under way for finding improved techniques for modifyingnetwork architectures that include adding hidden units using theUPSTART algorithm (Frean).  A case is made via comparison with fullyconnected connectionist techniques for keeping the rule base as closeto the original as possible, adding new input units only as needed.</blockquote><!WA14><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/rapture-isiknh-94.ps.Z"><!WA15><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="neither-informatica-94.ps.Z" </a><b> <li> Extending Theory Refinement to M-of-N Rules </b> <br> Paul T. Baffes and Raymond J. Mooney <br> <cite> Informatica</cite>, 17 (1993), pp. 387-397. <p><blockquote>In recent years, machine learning research has started addressing a problemknown as <em> theory refinement</em>. The goal of a theory refinement learner isto modify an incomplete or incorrect rule base, representing a domain theory,to make it consistent with a set of input training examples. This paperpresents a major revision of the EITHER propositional theory refinementsystem. Two issues are discussed. First, we show how run time efficiency canbe greatly improved by changing from a exhaustive scheme for computingrepairs to an iterative greedy method. Second, we show how to extendEITHER to refine MofN rules. The resulting algorithm, Neither (New EITHER), is more than an order of magnitude faster and producessignificantly more accurate results with theories that fit the MofNformat. To demonstrate the advantages of NEITHER, we present experimentalresults from two real-world domains.</blockquote><!WA16><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/neither-informatica-94.ps.Z"><!WA17><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="assert-proposal-93.ps.Z" </a><b> <li> Learning to Model Students: Using Theory Refinement to DetectMisconceptions </b> <br>Paul T. Baffes <br> Ph.D. proposal, Department of Computer Sciences, University of Texasat Austin, 1993. <p><blockquote>A new student modeling system called ASSERT is described which uses domainindependent learning algorithms to model unique student errors and toautomatically construct bug libraries. ASSERT consists of two learning phases.The first is an application of theory refinement techniques for constructingstudent models from a correct theory of the domain being tutored. The secondlearning cycle automatically constructs the bug library by extracting commonrefinements from multiple student models which are then used to bias futuremodeling efforts. Initial experimental data will be presented which suggeststhat ASSERT is a more effective modeling system than other induction techniquespreviously explored for student modeling, and that the automatic bug libraryconstruction significantly enhances subsequent modeling efforts.</blockquote><!WA18><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/assert-proposal-93.ps.Z"><!WA19><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="neither-ijcai-93.ps.Z" </a><b> <li> Symbolic Revision of Theories With M-of-N Rules </b> <br> Paul T. Baffes and Raymond J. Mooney <br> <cite> Proceedings of the Thirteenth International Joint Conference on ArtificialIntelligence</cite>, pp. 1135-1140, Chambery, France, 1993. (IJCAI-93) <p><blockquote>This paper presents a major revision of the EITHER propositional theoryrefinement system. Two issues are discussed. First, we show how run timeefficiency can be greatly improved by changing from a exhaustive scheme forcomputing repairs to an iterative greedy method. Second, we show how to extendEITHER to refine M-of-N rules. The resulting algorithm, NEITHER (New EITHER),is more than an order of magnitude faster and produces significantly moreaccurate results with theories that fit the M-of-N format. To demonstrate theadvantages of NEITHER, we present preliminary experimental results comparing itto EITHER and various other systems on refining the DNA promoter domain theory.</blockquote><!WA20><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/neither-ijcai-93.ps.Z"><!WA21><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="rapture-connsci-94.ps.Z" </a><b> <li> Combining Connectionist and Symbolic Learning to Refine Certainty-Factor Rule-Bases </b> <br> J. Jeffrey Mahoney and Raymond J. Mooney <br> <cite> Connection Science</cite>, 5 (1993), pp. 339-364. (Special issue onArchitectures for Integrating Neural and Symbolic Processing) <p><blockquote>This paper describes Rapture --- a system for revising probabilistic knowledgebases that combines connectionist and symbolic learning methods. Rapture usesa modified version of backpropagation to refine the certainty factors of aMycin-style rule base and it uses ID3's information gain heuristic to addnew rules.  Results on refining three actual expert knowledge bases demonstratethat this combined approach generally performs better than previous methods.</blockquote><!WA22><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/rapture-connsci-94.ps.Z"><!WA23><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="forte-mlj-94.ps.Z" </a><b> <li> Refinement of First-Order Horn-Clause Domain Theories </b> <br>Bradley L. Richards and Raymond J. Mooney <br><cite> Machine Learning</cite> 19,2 (1995), pp. 95-131. <p><blockquote> Knowledge acquisition is a difficult and time-consumingtask, and as error-prone as any human activity.  The task ofautomatically improving an existing knowledge base using learningmethods is addressed by a new class of systems performing <i> theoryrefinement</i>.  Until recently, such systems were limited topropositional theories.  This paper presents a system, FORTE(First-Order Revision of Theories from Examples), for refiningfirst-order Horn-clause theories.  Moving to a first-orderrepresentation opens many new problem areas, such as logic programdebugging and qualitative modelling, that are beyond the reach ofpropositional systems.  FORTE uses a hill-climbing approach to revisetheories.  It identifies possible errors in the theory and calls on alibrary of operators to develop possible revisions.  The best revisionis implemented, and the process repeats until no further revisions arepossible.  Operators are drawn from a variety of sources, includingpropositional theory refinement, first-order induction, and inverseresolution.  FORTE has been tested in several domains includinglogic programming and qualitative modelling.  </blockquote><!WA24><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/forte-mlj-94.ps.Z"><!WA25><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="rapture-mlw-92.ps.Z" </a><b> <li> Combining Symbolic and Neural Learning to Revise Probabilistic Theories </b> <br> J. Jeffrey Mahoney & Raymond J. Mooney <br> <cite> Proceedings of the 1992 Machine Learning Workshop on IntegratedLearning in Real Domains</cite>, Aberdeen Scotland, July 1992. <p><blockquote>This paper describes RAPTURE --- a system for revising probabilistictheories that combines symbolic and neural-network learning methods. RAPTURE uses a modified version of backpropagation to refine the certaintyfactors of a Mycin-style rule-base and it uses ID3's information gain heuristicto add new rules.  Results on two real-world domains demonstrate that thiscombined approach performs as well or better than previous methods.</blockquote><!WA26><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/rapture-mlw-92.ps.Z"><!WA27><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="assert-cogsci-92.ps.Z" </a><b> <li> Using Theory Revision to Model Students and Acquire Stereotypical Errors </b> <br> Paul T. Baffes and Raymond J. Mooney <br> <cite> Proceedings of the Fourteenth Annual Conference of the CognitiveScience Society</cite>, pp. 617-622, Bloomington, IN, July 1992. <p><blockquote>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
99久久伊人网影院| 99精品视频一区二区| 中文字幕中文乱码欧美一区二区| 色老汉一区二区三区| 国产一区二区三区在线观看免费| 一区二区三区电影在线播| 久久久国产午夜精品 | 欧美午夜精品理论片a级按摩| 国内外成人在线| 日本色综合中文字幕| 一区二区三区免费| 国产精品亲子伦对白| 亚洲精品在线电影| 日韩丝袜美女视频| 欧美人狂配大交3d怪物一区| 91麻豆成人久久精品二区三区| 国产成a人亚洲| 久久超级碰视频| 蜜桃一区二区三区在线观看| 亚洲第一狼人社区| 亚洲一区二区在线播放相泽| 国产精品萝li| 欧美精彩视频一区二区三区| 亚洲人午夜精品天堂一二香蕉| 国产一区视频导航| 亚洲天堂福利av| 91欧美一区二区| 日本一区中文字幕| 中文字幕亚洲区| 91浏览器在线视频| 日本亚洲免费观看| 国产精品免费视频观看| 精品蜜桃在线看| 91麻豆精品一区二区三区| 午夜免费久久看| 国产精品国模大尺度视频| 欧美日韩一区二区三区在线看| 狠狠色狠狠色合久久伊人| 亚洲国产aⅴ天堂久久| 自拍偷拍亚洲欧美日韩| 久久一区二区三区国产精品| 成人一区二区三区| 国产在线一区观看| 成人视屏免费看| 日本欧美大码aⅴ在线播放| 欧美一区二区三区小说| 91丨porny丨蝌蚪视频| 免费人成在线不卡| 亚洲va欧美va人人爽午夜| 精品视频一区二区三区免费| 国产不卡一区视频| 高清av一区二区| 欧美国产欧美综合| 奇米影视一区二区三区小说| 精品一区二区免费视频| 日韩电影免费在线看| 久久丁香综合五月国产三级网站| 精品一区二区三区免费视频| 国产成人自拍网| 91高清视频免费看| 欧美一卡二卡在线观看| 精品女同一区二区| 国产精品成人免费| 亚瑟在线精品视频| 国产美女av一区二区三区| gogo大胆日本视频一区| 欧美三级韩国三级日本三斤| 欧美成人r级一区二区三区| 国产女人18水真多18精品一级做| 亚洲欧美偷拍另类a∨色屁股| 五月天一区二区| 国产乱人伦偷精品视频不卡 | av一二三不卡影片| 91精品1区2区| 欧美一区日本一区韩国一区| 日本一区二区三区四区| 亚洲在线视频一区| 韩国av一区二区| 色综合天天综合狠狠| 91精品免费观看| 国产精品无码永久免费888| 亚洲综合免费观看高清完整版在线| 久久国产夜色精品鲁鲁99| www.成人网.com| 日韩欧美电影一区| 亚洲欧洲综合另类| 国产麻豆一精品一av一免费| 在线这里只有精品| 国产三级精品在线| 午夜精品视频一区| 9i看片成人免费高清| 日韩精品一区二区三区在线观看| 亚洲精品一卡二卡| 国产成人精品1024| 欧美高清激情brazzers| 国产一区二区三区香蕉| 色88888久久久久久影院野外| 精品免费日韩av| 视频一区二区三区在线| av中文字幕一区| 久久亚洲一区二区三区明星换脸 | 一区二区三区**美女毛片| 精品一二线国产| 欧美日韩高清一区二区不卡| **性色生活片久久毛片| 国产一区二区91| 欧美一区午夜精品| 天天影视涩香欲综合网| 国产69精品久久99不卡| 欧美一区二区精美| 亚洲国产一二三| 色综合天天性综合| 欧美激情在线看| 国产麻豆成人精品| 精品国产一区二区三区久久久蜜月| 亚洲成人一区二区| 欧美视频三区在线播放| 亚洲欧美一区二区三区久本道91| 福利电影一区二区| 国产欧美一区二区精品秋霞影院| 老汉av免费一区二区三区| 欧美一区二区三区电影| 五月激情六月综合| 欧美久久一二区| 性久久久久久久久久久久 | 久久夜色精品国产噜噜av| 人妖欧美一区二区| 3751色影院一区二区三区| 亚洲一区二区综合| 欧美伊人久久大香线蕉综合69| 亚洲啪啪综合av一区二区三区| 91视频精品在这里| 亚洲精品免费视频| 日本久久一区二区三区| 亚洲最大的成人av| 欧美综合久久久| 亚洲h在线观看| 91精品在线观看入口| 久久精品国产色蜜蜜麻豆| 日韩精品资源二区在线| 美美哒免费高清在线观看视频一区二区| 欧美一级免费观看| 国产一区视频在线看| 国产欧美精品一区二区色综合朱莉| 欧美一区二区三区不卡| 久久国产精品露脸对白| 精品久久一区二区| 国产成人精品亚洲777人妖| 国产精品久久99| 欧美视频自拍偷拍| 日本欧美一区二区| 久久久亚洲欧洲日产国码αv| 成人免费三级在线| 亚洲精品国产a久久久久久| 欧美日韩视频专区在线播放| 蜜桃av噜噜一区| 国产精品久久久一本精品| 色婷婷久久久久swag精品| 亚洲成人高清在线| 亚洲精品一区二区三区四区高清 | 精品日韩av一区二区| 国产精品羞羞答答xxdd| 亚洲免费观看高清完整版在线观看 | 一区二区日韩av| 日韩一级二级三级精品视频| 国产成人综合网| 亚洲成人动漫精品| 日韩视频不卡中文| 成人免费毛片嘿嘿连载视频| 亚洲午夜激情av| 久久综合久久综合九色| 97se亚洲国产综合在线| 男男成人高潮片免费网站| 中文字幕不卡的av| 欧美人伦禁忌dvd放荡欲情| 国产成人在线免费观看| 亚洲成人精品在线观看| 久久久久久久网| 欧美视频日韩视频| 国产福利精品导航| av电影天堂一区二区在线| 天天综合色天天| 1024亚洲合集| 日韩欧美国产麻豆| 色视频成人在线观看免| 国内精品写真在线观看| 亚洲综合视频在线| 国产欧美在线观看一区| 欧美二区三区的天堂| 91亚洲国产成人精品一区二区三| 麻豆国产欧美一区二区三区| 亚洲人吸女人奶水| 国产欧美一区二区精品仙草咪| 91精品国产91久久综合桃花| 99精品视频一区二区| 国产成人在线视频网址| 麻豆一区二区三| 午夜久久久影院| 亚洲精品国产成人久久av盗摄| 国产片一区二区|