亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? http:^^www.cs.utexas.edu^users^ml^theory-rev.html

?? This data set contains WWW-pages collected from computer science departments of various universities
?? HTML
?? 第 1 頁 / 共 3 頁
字號(hào):
Student modeling has been identified as an important component to the longterm development of Intelligent Computer-Aided Instruction (ICAI) systems. Twobasic approaches have evolved to model student misconceptions. One uses astatic, predefined library of user bugs which contains the misconceptionsmodeled by the system. The other uses induction to learn studentmisconceptions from scratch. Here, we present a third approach that uses amachine learning technique called theory revision. Using theory revisionallows the system to automatically construct a bug library for use in modelingwhile retaining the flexibility to address novel errors.</blockquote><!WA28><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/assert-cogsci-92.ps.Z"><!WA29><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="pac-bkchapter-94.ps.Z" </a><b> <li> A Preliminary PAC Analysis of Theory Revision </b> <br> Raymond J. Mooney <br> March 1992 <br><cite> Computational Learning Theory and Natural Learning Systems</cite>, Vol.  3, T. Petsche, S. Judd, and S. Hanson, Eds., MIT Press, 1995, pp. 43-53. <p><blockquote>This paper presents a preliminary analysis of the sample complexity of theoryrevision within the framework of PAC (Probably Approximately Correct)learnability theory.  By formalizing the notion that the initial theory is``close'' to the correct theory we show that the sample complexity of anoptimal propositional Horn-clause theory revision algorithm is $O( ( \ln 1 /\delta + d \ln (s_0 + d + n) ) / \epsilon)$, where $d$ is the {\em syntacticdistance} between the initial and correct theories, $s_0$ is the size ofinitial theory, $n$ is the number of observable features, and $\epsilon$ and$\delta$ are the standard PAC error and probability bounds. The paper alsodiscusses the problems raised by the computational complexity of theoryrevision.</blockquote><!WA30><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/pac-bkchapter-94.ps.Z"><!WA31><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="forte-ilp-92.ps.Z" </a><b> <li> Automated Debugging of Logic Programs via Theory Revision </b> <br> Raymond J. Mooney & Bradley L. Richards <br> <cite> Proceedings of the Second International Workshop on InductiveLogic Programming</cite>, Tokyo, Japan, June 1992. <p><blockquote>This paper presents results on using a theory revision system to automaticallydebug logic programs. FORTE is a recently developed system for revisingfunction-free Horn-clause theories.  Given a theory and a set of trainingexamples, it performs a hill-climbing search in an attempt to minimally modifythe theory to correctly classify all of the examples.  FORTE makes use ofmethods from propositional theory revision, Horn-clause induction (FOIL),and inverse resolution.  The system has has been successfully used to debuglogic programs written by undergraduate students for a programming languagescourse.</blockquote><!WA32><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/forte-ilp-92.ps.Z"><!WA33><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="either-aaaisymp-92.ps.Z" </a><b> <li> Batch versus Incremental Theory Refinement </b> <br> Raymond J. Mooney <br> <cite> Proceedings of AAAI Spring Symposium on KnowledgeAssimilation</cite>, Standford, CA, March, 1992. <p><blockquote>Most existing theory refinement systems are not incremental. However, anytheory refinement system whose input and output theories are compatible can beused to incrementally assimilate data into an evolving theory.  This is done bycontinually feeding its revised theory back in as its input theory.  Anincremental batch approach, in which the system assimilates a batch of examplesat each step, seems most appropriate for existing theory revision systems.Experimental results with the EITHER theory refinement system demonstratethat this approach frequently increases efficiency without significantlydecreasing the accuracy or the simplicity of the resulting theory.  However, ifthe system produces bad initial changes to the theory based on only smallamount of data, these bad revisions can ``snowball'' and result in an overalldecrease in performance.</blockquote><!WA34><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/either-aaaisymp-92.ps.Z"><!WA35><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="either-bkchapter-94.ps.Z" </a><b> <li> A Multistrategy Approach to Theory Refinement </b> <br> Raymond J. Mooney & Dirk Ourston <br> <cite> Machine Learning: A Multistrategy Approach</cite>, Vol. IV, R.S. Michalski& G. Teccuci (eds.), pp.141-164, Morgan Kaufman, San Mateo, CA, 1994. <p><blockquote>This chapter describes a multistrategy system that employs independent modulesfor deductive, abductive, and inductive reasoning to revise an arbitrarilyincorrect propositional Horn-clause domain theory to fit a set of preclassifiedtraining instances.  By combining such diverse methods, EITHER is ableto handle a wider range of imperfect theories than other theory revisionsystems while guaranteeing that the revised theory will be consistent with thetraining data.  EITHER has successfully revised two actual experttheories, one in molecular biology and one in plant pathology. The resultsconfirm the hypothesis that using a multistrategy system to learn from boththeory and data gives better results than using either theory or data alone.</blockquote><!WA36><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/either-bkchapter-94.ps.Z"><!WA37><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="either-aij-94.ps.Z" </a><b> <li> Theory Refinement Combining Analytical and Empirical Methods </b> <br>Dirk Ourston and Raymond J. Mooney <br> <cite> Artificial Intelligence</cite>, 66 (1994), pp. 311--344. <p><blockquote>This article describes a comprehensive approach to automatic theory revision.Given an imperfect theory, the approach combines explanation attempts forincorrectly classified examples in order to identify the failing portions ofthe theory. For each theory fault, correlated subsets of the examples are usedto inductively generate a correction. Because the corrections are <em>focused</em>, they tend to preserve the structure of the original theory.  Becausethe system starts with an approximate domain theory, in general fewer trainingexamples are required to attain a given level of performance (classificationaccuracy) compared to a purely empirical system. The approach applies toclassification systems employing a propositional Horn-clause theory. The systemhas been tested in a variety of application domains, and results are presentedfor problems in the domains of molecular biology and plant disease diagnosis.</blockquote><!WA38><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/either-aij-94.ps.Z"><!WA39><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="either-td-ml-91.ps.Z" </a><b> <li> Improving Shared Rules in Multiple Category Domain Theories </b> <br> Dirk Ourston and Raymond J. Mooney <br> <cite> Proceedings of the Eighth International Machine LearningWorkshop</cite>, pp. 534-538, Evanston, IL, June 1991. <p><blockquote>This paper presents an approach to improving the classification performance ofa multiple category theory by correcting intermediate rules which are sharedamong the categories.  Using this technique, the performance of a theory in onecategory can be improved through training in an entirely different category.Examples of the technique are presented and experimental results are given.</blockquote><!WA40><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/either-td-ml-91.ps.Z"><!WA41><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="either-ci-ml-91.ps.Z" </a><b> <li> Constructive Induction in Theory Refinement </b> <br> Raymond J. Mooney and Dirk Ourston <br> <cite> Proceedings of the Eighth International Machine LearningWorkshop</cite>, pp. 178-182, Evanston, IL. June 1991. <p><blockquote>This paper presents constructive induction techniques recently added to theEITHER theory refinement system.  These additions allow EITHER to handlearbitrary gaps at the ``top,'' ``middle,'' and/or ``bottom'' of an incompletedomain theory.  <i> Intermediate concept utilization</i> employs existing rulesin the theory to derive higher-level features for use in induction.  <i>Intermediate concept creation</i> employs inverse resolution to introduce newintermediate concepts in order to fill gaps in a theory that span multiplelevels.  These revisions allow EITHER to make use of imperfect domain theoriesin the ways typical of previous work in both constructive induction and theoryrefinement.  As a result, EITHER is able to handle a wider range of theoryimperfections than does any other existing theory refinement system.</blockquote><!WA42><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/either-ci-ml-91.ps.Z"><!WA43><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><a name="either-tr-91.ps.Z" </a><b> <li> Theory Refinement with Noisy Data </b> <br> Raymond J. Mooney and Dirk Ourston <br> Technical Report AI 91-153, Artificial Intelligence Lab, University ofTexas at Austin, March 1991. <p><blockquote>This paper presents a method for revising an approximate domain theory based onnoisy data. The basic idea is to avoid making changes to the theory thataccount for only a small amount of data. This method is implemented in theEITHER propositional Horn-clause theory revision system.  The paperpresents empirical results on artificially corrupted data to show that thismethod successfully prevents over-fitting.  In other words, when the data isnoisy, performance on novel test data is considerably better than revising thetheory to completely fit the data. When the data is not noisy, noise processingcauses no significant degradation in performance.  Finally, noise processingincreases efficiency and decreases the complexity of the resulting theory.</blockquote><!WA44><a href="file://ftp.cs.utexas.edu/pub/mooney/papers/either-tr-91.ps.Z"><!WA45><img align=top src="http://www.cs.utexas.edu/users/ml/paper.xbm"></a><p><! ===========================================================================><hr><address><!WA46><a href="http://www.cs.utexas.edu/users/estlin/">estlin@cs.utexas.edu</a></address>

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久综合久久鬼色中文字| 亚洲第一成人在线| 国产麻豆成人精品| 精品女同一区二区| 午夜激情一区二区三区| 欧美xxx久久| 国产精品一级片在线观看| 日本一区二区三区久久久久久久久不 | 欧美激情一区二区三区四区| 国产精品亚洲视频| 亚洲国产人成综合网站| 精品国产成人在线影院| 99久久免费精品| 日韩国产精品久久久| 久久综合一区二区| 欧美视频在线观看一区二区| 亚洲1区2区3区视频| 国产精品理论片在线观看| 日韩免费高清av| 欧洲日韩一区二区三区| 国产精品综合网| 丝袜亚洲另类丝袜在线| 亚洲免费观看高清| 欧美国产一区视频在线观看| 日韩精品一区二区三区视频 | 午夜日韩在线电影| 国产精品水嫩水嫩| 国产欧美一区视频| 久久先锋影音av| 久久精品这里都是精品| 欧美精品一区视频| 日韩一级片网站| 欧美精选一区二区| 91视频在线观看| 色域天天综合网| 欧美在线观看视频在线| 欧美亚日韩国产aⅴ精品中极品| 99久久精品免费精品国产| aaa亚洲精品一二三区| 成人黄色一级视频| 成人综合在线网站| 91蝌蚪porny九色| 欧美日韩一区二区三区视频| 日韩午夜激情电影| 久久久91精品国产一区二区精品 | 日韩电影免费在线观看网站| 午夜亚洲福利老司机| 午夜激情一区二区三区| 国产综合色精品一区二区三区| a4yy欧美一区二区三区| 91精品国产一区二区| 国产精品久久久久久久午夜片 | 亚洲天堂2016| 午夜久久久久久久久| 国产成a人亚洲| 欧美日韩免费高清一区色橹橹 | 激情欧美日韩一区二区| 99这里只有久久精品视频| 欧美一区二区三区性视频| 国产精品成人免费在线| 国产一区二区精品在线观看| 欧美性一二三区| 久久久国产精品麻豆| 丝袜亚洲另类欧美| 成人激情黄色小说| 精品成人一区二区三区四区| 免费成人美女在线观看| 欧美精品视频www在线观看| 国产精品初高中害羞小美女文| 蜜桃一区二区三区四区| 欧美日韩久久久久久| 亚洲激情男女视频| 欧美日韩久久久一区| 日韩精品1区2区3区| 91麻豆精品国产91久久久久| 日韩综合在线视频| 777亚洲妇女| 日韩成人免费看| 精品久久久久久亚洲综合网| 国产宾馆实践打屁股91| 久久久欧美精品sm网站| 激情综合色综合久久综合| 欧美激情在线一区二区| 91老司机福利 在线| 日韩va欧美va亚洲va久久| 久久久久久久久久久久久夜| 麻豆精品在线观看| 亚洲女子a中天字幕| 91精品欧美一区二区三区综合在| 国产精品一区二区你懂的| 亚洲乱码国产乱码精品精98午夜 | 日韩伦理电影网| 亚洲精品在线电影| 972aa.com艺术欧美| 亚洲一区二区欧美| 国产精品丝袜黑色高跟| 欧美高清视频不卡网| 国产呦萝稀缺另类资源| 一区二区欧美国产| 欧美成人一区二区| 在线综合亚洲欧美在线视频| 91日韩在线专区| 国产精品亚洲а∨天堂免在线| 亚洲mv在线观看| 国产亚洲一区字幕| 精品久久久久久久久久久久久久久久久| 99精品视频一区| 91日韩一区二区三区| av亚洲精华国产精华精华| 石原莉奈一区二区三区在线观看 | 欧美一区二区三区在线电影| 欧美吻胸吃奶大尺度电影| 国产精品 欧美精品| 成人天堂资源www在线| 久草中文综合在线| 免费欧美高清视频| 国产一区二区三区在线观看免费 | 欧美国产1区2区| 国产香蕉久久精品综合网| 国产目拍亚洲精品99久久精品| 国产三级精品视频| 久久嫩草精品久久久精品一| 国产精品久久久久影院| 尤物在线观看一区| 亚洲一区二区3| 九九在线精品视频| 九一久久久久久| 欧洲av在线精品| 欧美日韩成人综合天天影院 | 国产精品亚洲一区二区三区妖精| 国产精品一区免费视频| 欧美日韩色一区| 亚洲国产精品99久久久久久久久| 亚洲高清免费视频| 国产成人一区二区精品非洲| 在线视频欧美区| 国产欧美一区在线| 日韩电影在线观看网站| 色哟哟欧美精品| 国产日韩欧美高清在线| 亚洲女爱视频在线| 国产成人一区在线| 日韩欧美国产一区二区三区| 一区二区三区免费在线观看| 国产成人综合视频| 日韩精品一区二区三区老鸭窝 | 国产女人aaa级久久久级| 天天射综合影视| 色猫猫国产区一区二在线视频| 久久你懂得1024| 国产精品1区2区3区| 日韩欧美精品在线| 国产精品资源在线| 久久天天做天天爱综合色| 亚洲第一二三四区| 日韩视频中午一区| 毛片基地黄久久久久久天堂| 欧美一区二区三区免费大片 | 欧美韩国日本不卡| www.欧美日韩| 亚洲综合激情另类小说区| 国产成人在线视频网站| 亚洲日本一区二区三区| 91免费精品国自产拍在线不卡| 亚洲精品网站在线观看| 欧美日韩一区二区在线视频| 精品亚洲免费视频| 久久女同精品一区二区| 91麻豆精品在线观看| 丝袜亚洲另类丝袜在线| 精品国产一区二区三区不卡| 不卡视频在线观看| 男男成人高潮片免费网站| 欧美激情综合在线| 欧美日韩国产一级片| 蜜臂av日日欢夜夜爽一区| 亚洲免费观看高清完整| 欧美一区二区三区免费观看视频| 国内精品写真在线观看| 亚洲黄网站在线观看| 日本一区二区三区电影| 欧美一区二区三区免费视频| 成人三级伦理片| 秋霞电影网一区二区| 亚洲黄色小说网站| 亚洲欧美在线视频| 欧美videos中文字幕| 欧美日韩精品一区二区三区四区 | 成人黄色综合网站| 麻豆一区二区三区| 免费成人你懂的| 日本成人在线看| 裸体一区二区三区| 毛片av中文字幕一区二区| 天堂成人免费av电影一区| 亚洲va欧美va国产va天堂影院| 亚洲成av人片一区二区| 日韩毛片一二三区| 一区二区三区免费看视频| 国产精品不卡一区|